Molybdenum-based materials have been intensively investigated for high-performance gas sensor applications. Particularly, molybdenum oxides and dichalcogenides nanostructures have been widely examined due to their tunable structural and physicochemical properties that meet sensor requirements. These materials have good durability, are naturally abundant, low cost, and have facile preparation, allowing scalable fabrication to fulfill the growing demand of susceptible sensor devices. Significant advances have been made in recent decades to design and fabricate various molybdenum oxides- and dichalcogenides-based sensing materials, though it is still challenging to achieve high performances. Therefore, many experimental and theoretical investigations have been devoted to exploring suitable approaches which can significantly enhance their gas sensing properties. This review comprehensively examines recent advanced strategies to improve the nanostructured molybdenum-based material performance for detecting harmful pollutants, dangerous gases, or even exhaled breath monitoring. The summary and future challenges to advance their gas sensing performances will also be presented.
WO 3 -based gas sensors have attracted the attention of researchers around the world in creating and developing sensors that are sensitive, stable, and have excellent reproducibility against harmful gases. Various studies that have been performed since the last few years exhibited the superior potential of WO 3 in carrying out optimal chemisorption of oxidizing and reducing gas molecules. The additional materials such as metal, metal oxide, and carbon nanomaterial can significantly widen the active state area of the WO 3 surface and other facts in various studies illustrate that the addition of polymers will change the characteristics of the semiconductor sensor. This review provides a comprehensive review of the development and modification of WO 3 for enhancing toxic gas sensor performances. In addition, the discussion of the sensing mechanism, future opportunities as well as challenges will be addressed thereby can inspire research progress on WO 3 -based toxic gas detection sensors.
In this work, wearable resistive gas sensors based on hybrid graphene/zinc oxide (ZnO) nanocomposites were fabricated on a flexible cotton fabric and employed to monitor odorless and colorless carbon monoxide (CO). Dip-coating and chemical bath deposition (CBD) was used to deposit the graphene layer and grow the ZnO nanorods, respectively. The films were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-Ray diffraction (XRD) to investigate their morphological structures, elemental composition, and crystal phase, respectively. Those characterizations were also confirming the growth of ZnO nanorods on the already-deposited graphene layer on fabrics. From the gas sensor measurements at room temperature, it was revealed that these graphene/ZnO nanocomposites were highly sensitive and selective towards CO gas at low concentration down to 10 ppm. The shortest response and recovery times of the sensors were measured to be 280 s and 45 s, respectively. Moreover, in comparison to bare graphene sensors, the surface modification by ZnO nanorods could obviously enhance the sensing response by up to 40% (i.e., doubled sensitivity). These flexible hybrid sensors are therefore expected to be a promising alternative for the existing rigid CO sensors in the market by offering unique nanostructures, low-cost fabrication, high flexibility, and good sensing performances. INDEX TERMS Wearable gas sensor, carbon monoxide, graphene, zinc oxide, fabric-based sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.