Autologous platelet concentrates represent promising innovative tools in the field of regenerative medicine and have been extensively used in oral surgery. Unlike platelet rich plasma (PRP) that is a gel or a suspension, Leukocyte-Platelet Rich Fibrin (L-PRF) is a solid 3D fibrin membrane generated chair-side from whole blood containing no anti-coagulant. The membrane has a dense three dimensional fibrin matrix with enriched platelets and abundant growth factors. L-PRF is a popular adjunct in surgeries because of its superior handling characteristics as well as its suturability to the wound bed. The goal of the study is to demonstrate generation as well as provide detailed characterization of relevant properties of L-PRF that underlie its clinical success. Video LinkThe video component of this article can be found at
Advanced biomaterials and sophisticated processing technologies aim at fabricating tissue-engineering scaffolds that can predictably interact within a biological environment at the cellular level. Sterilization of such scaffolds is at the core of patient safety and is an important regulatory issue that needs to be addressed before clinical translation. In addition, it is crucial that meticulously engineered micro- and nano- structures are preserved after sterilization. Conventional sterilization methods involving heat, steam, and radiation are not compatible with engineered polymeric systems because of scaffold degradation and loss of architecture. Using electrospun scaffolds made from polycaprolactone, a low melting polymer, and employing spores of Bacillus atrophaeus as biological indicators, we compared ethylene oxide, autoclaving and 80% ethanol to a known chemical sterilant, peracetic acid (PAA), for their ability to sterilize as well as their effects on scaffold properties. PAA diluted in 20% ethanol to 1000 ppm or above sterilized electrospun scaffolds in 15 min at room temperature while maintaining nano-architecture and mechanical properties. Scaffolds treated with PAA at 5000 ppm were rendered hydrophilic, with contact angles reduced to 0°. Therefore, PAA can provide economical, rapid, and effective sterilization of heat-sensitive polymeric electrospun scaffolds that are used in tissue engineering.
Periodontitis is a chronic inflammatory disease affecting almost half of the adult US population. Gingiva is an integral part of the periodontium and has recently been identified as a source of adult gingiva-derived mesenchymal stem cells (GMSCs). Given the prevalence of periodontitis, the purpose of this study is to evaluate differences between GMSCs derived from healthy and diseased gingival tissues and explore their potential in bone engineering. Primary clonal cell lines were established from harvested healthy and diseased gingival and characterized for expression of known stem-cell markers and multi-lineage differentiation potential. Finally, they were cultured on electrospun polycaprolactone (PCL) scaffolds and evaluated for attachment, proliferation, and differentiation. Flow cytometry demonstrated cells isolated from healthy and diseased gingiva met the criteria defining mesenchymal stem cells (MSCs). However, GMSCs from diseased tissue showed decreased colony-forming unit efficiency, decreased alkaline phosphatase activity, weaker osteoblast mineralization, and greater propensity to differentiate into adipocytes than their healthy counterparts. When cultured on electrospun PCL scaffolds, GMSCs from both sources showed robust attachment and proliferation over a 7-day period; they exhibited high mineralization as well as strong expression of alkaline phosphatase. Our results show preservation of ‘stemness’ and osteogenic potential of GMSC even in the presence of disease, opening up the possibility of using routinely discarded, diseased gingival tissue as an alternate source of adult MSCs.
Guided tissue regeneration (GTR) aims to regenerate the lost attachment apparatus caused by periodontal disease through the use of a membrane. The goal of this study is to create and characterize a novel hybrid membrane that contains biologically active fibrin matrix within a synthetic polycaprolactone (PCL) electrospun membrane. Three-dimensional fibrin matrices and fibrin-incorporated electrospun membrane were created from fresh frozen plasma by centrifugation in glass vials under three different conditions: 400 g for 12 min, 1450 g for 15 min and 3000 g for 60 min. Half the membranes were crosslinked with 1% genipin. Degradation against trypsin indicated biologic stability while uniaxial tensile testing characterized mechanical properties. Continuous data was analyzed by ANOVA to detect differences between groups (p = 0.05). Fibrin-incorporated electrospun membranes showed statistically significant increase in mechanical properties (elastic modulus, strain at break and energy to break) compared to fibrin matrices. While crosslinking had marginal effects on mechanical properties, it did significantly increase biologic stability against trypsin (p < 0.0001). Lastly, membranes generated at 400 g and 1450 g were superior in mechanical properties and biologic stability compared to those generated at 3000 g. Fibrin-incorporated, crosslinked electrospun PCL membranes generated at lower centrifugation forces offers a novel strategy to generate a potentially superior membrane for GTR procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.