Homogeneity and stability of flexible perovskite solar cells (PSCs) are significant for the commercial feasibility in upscaling fabrication. Concretely, the mismatching between bottom interface and perovskite precursor ink can cause uncontrollable crystallization and undesired dangling bonds during the printing process. Herein, methylammonium acetate, serving as ink assistant (IAS) can effectively avoid the micron-scale defects of perovskite film. The in situ optical microscope is applied to prove the IAS can inhibit the colloidal aggregation and induce more adequate crystallization growth, thus avoiding the micron-scale defects of pinholes and intergranular cracking. Concurrently, 4-chlorobenzenesulfonic acid is introduced into the electrode surface as a passivation layer to restore the deep traps at perovskite interface in nanoscale. Finally, the target flexible devices (1.01 cm 2 ) deliver a superior efficiency of 18.12% with improved air atmosphere stability. This multi-scale defect repair strategy provides an integrated design concept of homogeneity and stability for scalable and flexible PSCs.
Electrochemiluminescence (ECL) has numerous merits such as high sensitivity and specificity for the detection applications on pharmacy, food safety, immunoassay, disease diagnosis, environmental monitoring, nucleic acid assay, and clinical treatment. However, the insufficiency of ECL luminescent reagents is restricting their adoption on complex systems or multi-analyte detections. In this work, to improve the selectivity and discrimination of ECL detection with one or less luminescent reagent, we employed multi-stopband photonic crystals (PCs) to enhance assigned ECL. The discrimination of ECL was well investigated to establish the quantitative description with PC stopbands. The multi-stopband PC electrode can facilely achieve 10 antibiotics qualitative and quantitative analysis with 100% accuracy and 0.44 μM LOD in PBS buffer and human serum. The selectivity of ECL detection for multi-analytes can be improved via designed PC luminescence amplifications. The exploration on PC selectivity for ECL enhancement will promote the realistic application of the ECL technique and contribute to the facile and efficient optical platform for clinical or health monitoring.
Automation and efficiency requirements of environmental monitoring are the pursuit of spontaneous sampling and ultrasensitivity for current sensory systems or detection apparatuses. In this work, inspired by cactus hierarchical structures, we develop a cactus-inspired photonic crystal chip to integrate spontaneous droplet sampling and fluorescence enhancement for sensitive multianalyte detection. A conical hydrophilic pattern on hydrophobic surfaces can give rise to unidirectional Laplace pressure, which drives droplet transport to the assigned photonic crystal site. The nanostructure of photonic crystals has bigger capillarity to drive the droplet wetting uniformly into the photonic crystal matrix while performing prominent fluorescence enhancement by their photonic bandgap. A low to attomolar (2.24 × 10 −19 M) fluorescence limit of detection (LOD) sensitivity can be achieved by the synergy of spontaneous droplet sampling and fluorescence enhancement. Focused on eutrophic water problems and algae pollution monitoring, a femtomolar (1.83 × 10 −15 M) LOD and identification of various microcystins in urban environmental water can be achieved. The suitable integration of the unidirectional droplet transport by Laplace pressure and fluorescence enhancement by photonic crystals can achieve the spontaneous sampling and signal enhancement for ultratrace detections and sample survey of environmental monitoring and disease diagnosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.