Hypertension is a risk factor for the cardiovascular diseases. Although, several drugs are used to treat hypertension, the success of the antihypertensive therapy is limited. Resveratrol decreases blood pressure in animal models of hypertension. This study researched the mechanisms behind the effects of resveratrol on hypertension. Hypertension was induced by using the deoxycorticosterone acetate (DOCA)-induced (15 mg/kg twice per week, subcutaneously) salt-sensitive hypertension model of Wistar rats. Hypertension caused a decrease in endotheliumdependent relaxations of the isolated thoracic aorta. Resveratrol treatment (50 mg/l in drinking water) prevented DOCA salt-induced hypertension, but did not improve endothelial dysfunction. Plasma nitric oxide (NO), asymmetric dimethylarginine (ADMA), total antioxidant capacity (TAC) and hydrogen sulfide (H 2 S) levels were not changed by DOCA salt application. However, treatment of resveratrol significantly decreased ADMA and increased TAC and H 2 S levels. NO level in circulation was not significantly changed by resveratrol. DOCA salt application and resveratrol treatment also caused an alteration in the epigenetic modification of vessels. Staining pattern of histone 3 lysine 27 methylation (H3K27me3) in the aorta and renal artery sections was changed. These results show that preventive effect of resveratrol on DOCA salt-induced hypertension might due to its action on the production of some blood biomarkers and the epigenetic modification of vessels that would focus upon new aspect of hypertension prevention and treatment.
In this study, the effect of liver X receptor (LXR) activation on hypertension-induced cardiac structural and functional alterations was investigated. Hypertension was induced by deoxycorticosterone acetate (DOCA)-salt administration in uninephrectomized rats for 6 weeks. LXR agonist GW3965 (3-{3-[(2-chloro-3-trifluoromethyl-benzyl)-(2,2-diphenyl-ethyl)-amino]-propoxy}-phenyl)-acetic acid was given for the past week. Rhythmic activity and contractions of the isolated heart tissues were recorded. Biochemical parameters were assessed in ventricular tissue and plasma samples. Cardiac expressions of various proteins were examined, and histopathological evaluation was performed in the left ventricle and liver. GW3965 reduced systolic blood pressure and enhanced noradrenaline-stimulated papillary muscle contraction induced by DOCA-salt + uninephrectomy. Plasma and tissue total antioxidant capacity (TAC) increased and tissue 4-hydroxynonenal (4-HNE) levels decreased in the DOCA-salt group. GW3965 elevated plasma and tissue TAC levels in both of groups. Glucose-regulated protein-78 (GRP78), phospho-dsRNA-activated-protein kinase–like ER kinase (p-PERK), matrix metalloproteinase-2 (MMP-2), and nuclear factor-κB p65 (NF-κB p65) expression was augmented, and inhibitor-κB-α (IκB-α) expression was reduced in hypertensive hearts. The altered levels of all these markers were reversed by GW3965. Also, GW3965 ameliorated DOCA-salt + uninephrectomy-induced cardiac and hepatic inflammation and fibrosis. However, GW3965 unchanged the plasma lipid levels and hepatic balloon degeneration score. These results demonstrated that LXR activation may improve hypertension-induced cardiac changes without undesired effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.