This paper combines a wide-area assessment of forecast changes in wintertime synoptic conditions over western North America with a meso-scale alpine hydrometeorology model to evaluate the impacts of forecast climate change on snowpack conditions in an alpine watershed. The synoptic analysis was used to generate long-term climate time series scenarios using the Canadian Centre for Climate Modelling and Analysis first-generation coupled general circulation model (GCM). The alpine hydrometeorology model SIMGRID is used to predict changes in wintertime precipitation at the watershed scale. The SNOPAC model is a simple snow model that predicts the overall snow accumulation throughout a watershed based on the output from SIMGRID. A vapour transfer model has been incorporated into the SNOPAC model to estimate snow volumes more accurately. The model is applied to a small alpine watershed in the southern Canadian Rockies. The synoptic analysis and GCM output forecasts a modest increase in both winter precipitation and temperatures in the study area. The hypothesis herein is that the increase in winter precipitation due to synoptic conditions will not compensate for regional changes in the rain-to-snow ratios. The net result will be a decline in winter accumulations of precipitation as snow, and hence an expected decline in spring runoff.
ABSTRACT:The climatology and hydrology of western North America display strong periodic cycles which are correlated with the low-frequency Pacific Decadal Oscillation (PDO). The PDO's signature is seen throughout the entire North Pacific region, with related significant associations to hydrology and ecology in western North America and northeastern Asia. Therefore, the status of the PDO in a warmer world caused by anthropogenic climate change is of great interest. We developed early 21st-century projections of the PDO, using data from archived runs of the most recent high-resolution global climate models from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (Phase 3 of the Coupled Model Intercomparison Project). Because of the geographical adjacency and hypothesized interactions between the PDO and the El Niño-Southern Oscillation (ENSO), and between the PDO and the North Atlantic Oscillation/Arctic Oscillation (NAO/AO), we also developed concurrent projections of ENSO and the NAO and examined their relationships with the projected PDO. For the B1, A1B and A2 Special Report on Emissions Scenarios (SRES) emission scenarios, the PDO projections for 2000-2050 showed a weak multi-model mean shift towards more occurrences of the negative phase PDO, which becomes statistically significant for the time period 2000-2099. However, not all the models showed a consistent shift to negative PDO conditions.
Synoptic downscaling from global circulation models (GCMs) has been widely used to develop local and regional-scale future precipitation scenarios under global warming. This paper presents an analysis of the linkages between the Canadian Centre for Climate Modelling and Analysis first version of the Canadian Global Coupled Model (CCCma CGCM1) 2000 model output and local/regional precipitation time series. The GCM 500 hPa geopotential heights were visually classified for synoptic patterns using a geographical information system. The pattern frequencies were statistically compared with historical data from Changnon et al. (1993. Monthly Weather Review 121: 633-647) for the winter period 1961-85. The CGCM1 synoptic frequencies compare favourably with the historical data, and they represent a substantial improvement over the 1992 Canadian Climate Centre Global Circulation Model synoptic climatology output. The CGCM1 output was used to forecast future winter precipitation scenarios for five geographically diverse climate stations in western North America.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.