The anticancer drug cyclophosphamide (CP) has nephrotoxic effects besides its urotoxicity, which both in turn limit its clinical utility. The nephrotoxicity of CP is less common compared to its urotoxicity, and not much importance has been given for the study of mechanism of CP-induced nephrotoxicity so far. Overproduction of reactive oxygen species (ROS) during inflammation is one of the reasons of the kidney injury. Selenoproteins play crucial roles in regulating ROS and redox status in nearly all tissues; therefore, in this study, the nephrotoxicity of CP and the possible protective effects of seleno L-methionine (SLM) on rat kidneys were investigated. Forty-two Sprague-Dawley rats were equally divided into six groups of seven rats each. The control group received saline, and other rats were injected with CP (100 mg/kg), SLM (0.5 or 1 mg/kg), or CP+ SLM intraperitoneally. Malondialdehyde (MDA) and glutathione (GSH) levels in kidney homogenates of rats were measured, and kidney tissues were examined under the microscope. CP-treated rats showed a depletion of renal GSH levels (28% of control), while CP+SLM-injected rats had GSH values close to the control group. MDA levels increased 36% of control following CP administration, which were significantly decreased after SLM treatment. Furthermore, these biochemical results were supported by microscopical observations. In conclusion, the present study not only points to the therapeutic potential of SLM in CP-induced kidney toxicity but also indicates a significant role for ROS and their relation to kidney dysfunction.
Lipid peroxidation (LPO) is initiated by the attack of free radicals (eg OH ·, O2- and H2O2) on cellular or organelle membranes phospholipids or polyunsaturated fatty acids (PUFA), and with the formation of various types of aldehydes, ketones, alkanes, carboxylic acids and polymerization products. It is an autoxidation process that results. These products are highly reactive with other cellular components and serve as biological markers of LPO. Malondialdehyde (MDA), a toxic aldehyde end product of LPO, causes structural changes that mediate its oxidation, such as fragmentation, modification, and aggregation, especially in DNA and protein. The excessive binding of these reactive aldehydes to cellular proteins alters membrane permeability and electrolyte balance. Degradation of proteins leads to progressive degradation of the biological system mediated by oxidative stress. The chain reaction (CR) of LPO is initiated by the attack of free radicals on the PUFA of the cell membrane to form a carbon centered radical (R*). The O2 · - radical attacks the other lipid molecule to form lipid hydroperoxide (ROOH), thereby spreading the CR and forming the lipid peroxyl radical (ROO). These lipid hydroperoxides severely inhibit membrane functionality by allowing ions such as increased hardness and calcium to leak through the membrane. Damage to the lipid membrane and macromolecule oxidation can result in activation of necrotic or apoptotic tissue death pathways if severe enough.
Cyclophosphamide (CP) is a widely used antineoplastic drug that causes toxicity in the normal cell due to its metabolites. The major drawback of this drug is an undesirable myelosuppression. Selenium (Se) is a potent nutritional antioxidant that carries out biological effects by its incorporation into selenoproteins, such as glutathione peroxidase (GPx). The possible protective effects of seleno-L-methionine (SLM) against CP-related toxicity of blood cells and bone marrow of rats were investigated in this study. Intraperitoneal (i.p) administration of 50, 100, or 150 mg/kg of CP caused, in a dose-dependent manner, reductions in the number of leukocytes (78, 89, and 92%, respectively), thrombocytes (22, 33, and 52%, respectively), and bone marrow-nucleated cells (72, 90, and 94%, respectively). The groups that had CP treatment alone were killed 3 days after the CP injection. For the groups having CP+SLM, SLM (0.4 or 0.8 mg/kg i.p) administration was started 3 days earlier than the CP administration and continued to the end of the experiment (6 days). On day 4, the animals were weighed again, relative doses of CP were estimated, and CP+SLM was administered together. On day 7, blood samples were collected and bone marrow of animals were resected under anesthesia. The results indicated that treatment of rats within a select dose range of SLM could reduce CP-induced toxicity on blood cells and bone marrow.
Cyclophosphamide (CP) is a widely used antineoplastic drug, which could cause toxicity of the normal cells due to its toxic metabolites. Its urotoxicity may cause doselimiting side effects like hemorrhagic cystitis. Overproduction of reactive oxygen species (ROS) during inflammation is one of the reasons of the urothelial injury. Selenoproteins play crucial roles in regulating ROS and redox status in nearly all tissues; therefore, in this study, the urotoxicity of CP and the possible protective effects of seleno-L-methionine (SLM) on urinary bladder of rats were investigated. Intraperitoneal (i.p.) administration of 50, 100, or 150 mg/kg CP induced cystitis, in a dose-dependent manner, as manifested by marked congestion, edema and extravasation in rat urinary bladder, a marked desquamative damage to the urothelium, severe inflammation in the lamina propria, focal erosions, and polymorphonuclear (PMN) leukocytes associated with occasional lymphocyte infiltration determined by macroscopic and histopathological examination. In rat urinary bladder tissue, a significant decrease in the endogenous antioxidant compound glutathione, and elevation of lipid peroxidation were also noted. Pretreatment with SLM (0.5 or 1 mg/kg) produced a significant decrease in the bladder edema and caused a marked decrease in vascular congestion and hemorrhage and a profound improvement in the histological structure. Moreover, SLM pretreatment decreased lipid peroxide significantly in urinary bladder Biol Trace Elem Res (2010) 134:98-108
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.