Noise-induced temporary hearing threshold shift (TTS) was studied in a harbor porpoise exposed to impulsive sounds of scaled-down airguns while both stationary and free-swimming for up to 90 min. In a previous study, ∼4 dB TTS was elicited in this porpoise, but despite 8 dB higher single-shot and cumulative exposure levels (up to 199 dB re 1 μPa2s) in the present study, the porpoise showed no significant TTS at hearing frequencies 2, 4, or 8 kHz. There were no changes in the study animal's audiogram between the studies or significant differences in the fatiguing sound that could explain the difference, but audible and visual cues in the present study may have allowed the porpoise to predict when the fatiguing sounds would be produced. The discrepancy between the studies may have resulted from self-mitigation by the porpoise. Self-mitigation, resulting in reduced hearing sensitivity, can be achieved via changes in the orientation of the head, or via alteration of the hearing threshold by processes in the ear or central nervous system.
Temporary hearing threshold shifts (TTSs) were investigated in two adult female harbor seals after exposure for 60 min to a continuous one-sixth-octave noise band centered at 16 kHz (the fatiguing sound) at sound pressure levels of 128–149 dB re 1 μPa, resulting in sound exposure levels (SELs) of 164–185 dB re 1 μPa2s. TTSs were quantified at the center frequency of the fatiguing sound (16 kHz) and at half an octave above that frequency (22.4 kHz) by means of a psychoacoustic hearing test method. Susceptibility to TTS was similar in both animals when measured 8–12 and 12–16 min after cessation of the fatiguing sound. TTS increased with increasing SEL at both frequencies, but above an SEL of 174 dB re 1 μPa2s, TTS was greater at 22.4 kHz than at 16 kHz for the same SELs. Recovery was rapid: the greatest TTS, measured at 22.4 kHz 1–4 min after cessation of the sound, was 17 dB, but dropped to 3 dB in 1 h, and hearing recovered fully within 2 h. The affected hearing frequency should be considered when estimating ecological impacts of anthropogenic sound on seals. Between 2.5 and 16 kHz the species appears equally susceptible to TTS.
Two female harbor seals were exposed for 60 min to a continuous one-sixth-octave noise band centered at 32 kHz at sound pressure levels of 92 to 152 dB re 1 μPa, resulting in sound exposure levels (SELs) of 128 to 188 dB re 1 μPa2s. This was part of a larger project determining frequency-dependent susceptibility to temporary threshold shift (TTS) in harbor seals over their entire hearing range. After exposure, TTSs were quantified at 32, 45, and 63 kHz with a psychoacoustic technique. At 32 kHz, only small TTSs (up to 5.9 dB) were measured 1–4 min (TTS1–4) after exposure, and recovery was within 1 h. The higher the SEL, the higher the TTS induced at 45 kHz. Below ∼176 dB re 1 μPa2s, the maximum TTS1–4 was at 32 kHz; above ∼176 dB re 1 μPa2s, the maximum TTS1–4 (up to 33.8 dB) was at 45 kHz. During one particular session, a seal was inadvertently exposed to an SEL of ∼191 dB re 1 μPa2s and at 45 kHz, her TTS1–4 was >45 dB; her hearing recovered over 4 days. Harbor seals appear to be equally susceptible to TTS caused by sounds in the 2.5–32 kHz range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.