Currently, three stocks of sei whales (Balaenoptera borealis) are defined in the North Atlantic; the Nova Scotian, Iceland-Denmark Strait and Eastern North Atlantic stocks, which are mainly based upon historical catch and sighting data. We analyzed mitochondrial control region DNA (mtDNA) sequences and genotypes from 7 to 11 microsatellite loci in 87 samples from three sites in the North Atlantic; Iceland, the Gulf of Maine and the Azores, and compared against the North Pacific using 489 previously published samples. No statistically significant deviations from homogeneity were detected among the North Atlantic samples at mtDNA or microsatellite loci. The genealogy estimated from the mtDNA sequences revealed a clear division of the haplotypes into a North Atlantic and a North Pacific clade, with the exception of one haplotype detected in a single sample from the Azores, which was included in the North Pacific clade. Significant genetic divergence between the North Atlantic and North Pacific Oceans was detected (mtDNA Φ ST = 0.72, microsatellite Weir and Cockerham's ϴ = 0.20; p < 0.001). The coalescent-based estimate of the population divergence time between the North Atlantic and North Pacific populations from the sequence variation among the mtDNA sequences was at 163,000 years ago. However, the inference was limited by an absence of samples from the Southern Hemisphere and uncertainty regarding mutation rates and generation times. The estimates of inter-oceanic migration rates were low (Nm at 0.007 into the North Pacific and at 0.248 in the opposite direction). Although estimates of genetic divergence among the current North Atlantic stocks were low and consistent with the extensive range of movement observed in satellite tagged sei whales, the high uncertainty of the genetic divergence estimates precludes rejection of multiple stocks in the North Atlantic.
Loudness perception by human infants and animals can be studied under the assumption that sounds of equal loudness elicit equal reaction times (RTs). Simple RTs of a harbour porpoise to narrowband frequency-modulated signals were measured using a behavioural method and an RT sensor based on infrared light. Equal latency contours, which connect equal RTs across frequencies, for reference values of 150−200 ms (10 ms intervals) were derived from median RTs to 1 s signals with sound pressure levels (SPLs) of 59-168 dB re. 1 μPa and centre frequencies of 0.5, 1, 2, 4, 16, 31.5, 63, 80 and 125 kHz. The higher the signal level was above the hearing threshold of the harbour porpoise, the quicker the animal responded to the stimulus (median RT 98−522 ms). Equal latency contours roughly paralleled the hearing threshold at relatively low sensation levels (higher RTs). The difference in shape between the hearing threshold and the equal latency contours was more pronounced at higher levels (lower RTs); a flattening of the contours occurred for frequencies below 63 kHz. Relationships of the equal latency contour levels with the hearing threshold were used to create smoothed functions assumed to be representative of equal loudness contours. Auditory weighting functions were derived from these smoothed functions that may be used to predict perceived levels and correlated noise effects in the harbour porpoise, at least until actual equal loudness contours become available.
Sperm whales communicate using codas (stereotyped click sequences). Females and juveniles live in long‐term social units, and units with similar coda repertoires share vocal clan membership. Vocal clans exhibit culturally defined differences in their multilevel social structure. Here, we aimed to identify different social units among sperm whales in Mauritius in the southwestern Indian Ocean, and to describe and compare their coda repertoires to investigate the presence of different vocal clans. We conducted six boat‐based surveys between 2008 and 2013, during which 101 different individuals were photo‐identified. Analysis of associations between 22 resighted individuals divided them into four candidate social units, but a lack of resightings impedes solid delineation of social units. Based on number and rhythm of clicks, at least 24 discrete coda types were detected among 4,767 analyzed codas using two different classification methods. Comparison of coda repertoires recorded from seven sperm whale groupings revealed the possible existence of two sympatric vocal clans, but the size differences of recorded repertoires warrant caution of interpretation. To further evaluate social structuring and the presence of different vocal clans in this region, future surveys should aim at obtaining long‐term sighting and acoustic data, and cover a more extensive area.
Temporary hearing threshold shifts (TTSs) were investigated in two adult female harbor seals after exposure for 60 min to a continuous one-sixth-octave noise band centered at 16 kHz (the fatiguing sound) at sound pressure levels of 128–149 dB re 1 μPa, resulting in sound exposure levels (SELs) of 164–185 dB re 1 μPa2s. TTSs were quantified at the center frequency of the fatiguing sound (16 kHz) and at half an octave above that frequency (22.4 kHz) by means of a psychoacoustic hearing test method. Susceptibility to TTS was similar in both animals when measured 8–12 and 12–16 min after cessation of the fatiguing sound. TTS increased with increasing SEL at both frequencies, but above an SEL of 174 dB re 1 μPa2s, TTS was greater at 22.4 kHz than at 16 kHz for the same SELs. Recovery was rapid: the greatest TTS, measured at 22.4 kHz 1–4 min after cessation of the sound, was 17 dB, but dropped to 3 dB in 1 h, and hearing recovered fully within 2 h. The affected hearing frequency should be considered when estimating ecological impacts of anthropogenic sound on seals. Between 2.5 and 16 kHz the species appears equally susceptible to TTS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.