Detailed and unambiguous characterization of the surface structure of detonation nanodiamond (DND) particles remains one of the most challenging tasks for the preparation of chemically functionalized nanodiamonds. In the present paper, a combination of FTIR, NMR, and XPS was used to characterize DND particles that were treated in a reduction reaction that results in the enrichment of hydroxyl and hydroxymethyl functional groups. FTIR spectra and quantum-chemistry modeling demonstrated that the vacuum treatment of the sample, with the purpose of the removing adsorbed water and other volatile contaminates, is mandatory to obtain the correct data on the nature and relative content of the −OH surface groups on DND. 13C and 1H NMR spectra show signals from the diamond core, hydroxyl, hydrocarbon groups, and moisture on the diamond surface. NMR data were taken for as-prepared DNDs, as well as those that were dried under vacuum conditions of 10–4 Torr, in order to distinguish between the NMR signal contributions due to moisture and other hydrogen-containing groups.
Nanoparticles (NPs) offer promise for a multitude of biological applications including cellular probes at the bio-interface for targeted delivery of anticancer substances, Raman and fluorescent-based imaging and directed cell growth. Nanodiamonds (NDs), in particular, have several advantages compared to other carbon-based nanomaterials - including a rich surface chemistry useful for chemical conjugation, high biocompatibility with little reactive oxygen species (ROS) generation, physical and chemical stability that affords sterilization, high surface area to volume ratio, transparency and a high index of refraction. The visualization of ND internalization into cells is possible via photoluminescence, which is produced by direct dye conjugation or high energy irradiation that creates nitrogen vacancy centers. Here, we explore the kinetics and mechanisms involved in the intracellular uptake and localization of novel, highly-stable, fluorophore-conjugated NDs. Examination in a neuronal cell line (N2A) shows ND localization to early endosomes and lysosomes with eventual release into the cytoplasm. The addition of endocytosis and exocytosis inhibitors allows for diminished uptake and increased accumulation, respectively, which further corroborates cellular behavior in response to NDs. Ultimately, the ability of the NDs to travel throughout cellular compartments of varying pH without degradation of the surface-conjugated fluorophore or alteration of cell viability over extended periods of time is promising for their use in biomedical applications as stable, biocompatible, fluorescent probes.
The synthesis of a new class of fluorescent carbon nanomaterials, carbon‐dot‐decorated nanodiamonds (CDD‐ND), is reported. These CDD‐NDs are produced by specific acid treatment of detonation soot, forming tiny rounded sp2 carbon species (carbon dots), 1–2 atomic layers thick and 1–2 nm in size, covalently attached to the surface of the detonation diamond nanoparticles. A combination of nanodiamonds bonded with a graphitic phase as a starting material and the application of graphite intercalated acids for oxidation of the graphitic carbon is necessary for the successful production of CDD‐ND. The CDD‐ND photoluminescence (PL) is stable, 20 times more intense than the intrinsic PL of well‐purified NDs and can be tailored by changing the oxidation process parameters. Carbon‐dot‐decorated DNDs are shown to be excellent probes for bioimaging applications and inexpensive additives for PL nanocomposites.
Pure poly(dimethylsiloxane) (PDMS) films, PDMS-nanodiamond (ND) and pure nanodiamond powder were irradiated with 2 MeV protons under a variety of fluence and current conditions. Upon proton irradiation, these samples acquire a fluence-dependent photoluminescence (PL). The emission and excitation spectra, photostability and emission lifetime of the induced photoluminescence of PDMS and PDMS-ND samples are reported. Pure PDMS exhibits a noticeable stable blue PL, while the PDMS-ND composites exhibit a pronounced stable green PL under 425 nm excitation. The PL of PDMS-ND composites is much more prominent than that of pure PDMS or pure ND powder even when irradiated at higher doses. The origin of the significantly enhanced PL intensity for the proton-irradiated PDMS-ND composite is explained by the combination of enhanced intrinsic PL within ND particles due to ion-implantation-generated defects and by PL originating from structural transformations produced by protons at the nanodiamond/matrix interface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.