GGA+U calculation were performed for oxides of Ti, V, Mo, and Ce with the objective of establishing the best value of the parameter Ueff to use in order to match the calculated reduction and oxidation energies of each oxide with experimental values. In each case, the reaction involved the hydrogen reduction of an oxide to its next lower oxide and the formation of water. Our calculations show that the optimal value of Ueff required to match calculated and experimental values of the reaction energy are significantly different from those reported in the literature based on matching lattice parameters or electronic properties and that the use of these values of Ueff can result in errors in the calculated redox energies of over 100 kJ/mol. We also found that, when an element exhibits more than two oxidation states, the energy of redox reactions between different pairs of these states are described by slightly different values of Ueff.
At the 21st session of the United Nations Framework Convention on Climate Change (UNFCCC, COP21), a voluntary action plan, the '4 per 1000 Initiative: Soils for Food Security and Climate' was proposed under the Agenda for Action. The Initiative underlines the role of soil organic matter (SOM) in addressing the three-fold challenge of food and nutritional security, adaptation to climate change and mitigation of human-induced greenhouse gases (GHGs) emissions. It sets an ambitious aspirational target of a 4 per 1000 (i.e. 0.4%) rate of annual increase in global soil organic carbon (SOC) stocks, with a focus on agricultural lands where farmers would ensure the carbon stewardship of soils, like they manage day-to-day multipurpose production systems in a changing environment. In this paper, the opportunities and challenges for the 4 per 1000 initiative are discussed. We show that the 4 per 1000 target, calculated relative to global top soil SOC stocks, is consistent with literature estimates of the technical potential for SOC sequestration, though the achievable potential is likely to be substantially lower given socio-economic constraints. We calculate that land-based negative emissions from additional SOC sequestration could significantly contribute to reducing the anthropogenic CO 2 equivalent emission gap identified from Nationally Determined Contributions pledged by countries to stabilize global warming levels below 2°C or even 1.5°C under the Paris agreement on climate. The 4 per 1000 target could be implemented by taking into account differentiated SOC stock baselines, reversing the current trend of huge soil CO 2 losses, e.g. from agriculture encroaching peatland soils. We further discuss the potential benefits of SOC stewardship for both degraded and healthy soils along contrasting spatial scales (field, farm, landscape and country) and temporal (year to century) horizons. Last, we present some of the implications relative to non-CO 2 GHGs emissions, water and nutrients use as well as co-benefits for crop yields and climate change adaptation. We underline the considerable challenges associated with the non-permanence of SOC stocks and show how the rates of adoption and the duration of improved soil management practices could alter the global impacts of practices under the 4 per 1000 initiative. We conclude that the 4 per 1000 initiative has potential to support multiple sustainable development goals (SDGs) of the 2030 Agenda. It can be regarded as no-regret since increasing SOC in agricultural soils will contribute to food security benefits that will enhance resilience to climate change. However, social, economic and environmental safeguards will be needed to ensure an equitable and sustainable implementation of the 4 per 1000 target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.