The upper respiratory tract (URT) is a crucial site for host defense, as it is home to bacterial communities that both modulate host immune defense and serve as a reservoir of potential pathogens. Young children are at high risk of respiratory illness, yet the composition of their URT microbiota is not well understood. Microbial profiling of the respiratory tract has traditionally focused on culturing common respiratory pathogens, whereas recent culture-independent microbiome profiling can only report the relative abundance of bacterial populations. In the current study, we used both molecular profiling of the bacterial 16S rRNA gene and laboratory culture to examine the bacterial diversity from the oropharynx and nasopharynx of 51 healthy children with a median age of 1.1 years (range 1-4.5 years) along with 19 accompanying parents. The resulting profiles suggest that in young children the nasopharyngeal microbiota, much like the gastrointestinal tract microbiome, changes from an immature state, where it is colonized by a few dominant taxa, to a more diverse state as it matures to resemble the adult microbiota. Importantly, this difference in bacterial diversity between adults and children accompanies a change in bacterial load of three orders of magnitude. This indicates that the bacterial communities in the nasopharynx of young children have a fundamentally different structure from those in adults and suggests that maturation of this community occurs sometime during the first few years of life, a period that includes ages at which children are at the highest risk for respiratory disease.
IntroductionCystic fibrosis (CF) airways are colonized by a polymicrobial community of organisms, termed the CF microbiota. We sought to define the microbial constituents of the home environment of individuals with CF and determine if it may serve as a latent reservoir for infection.MethodsSix patients with newly identified CF pathogens were included. An investigator collected repeat sputum and multiple environmental samples from their homes. Bacteria were cultured under both aerobic and anaerobic conditions. Morphologically distinct colonies were selected, purified and identified to the genus and species level through 16S rRNA gene sequencing. When concordant organisms were identified in sputum and environment, pulsed-field gel electrophoresis (PFGE) was performed to determine relatedness. Culture-independent bacterial profiling of each sample was carried out by Illumina sequencing of the V3 region of the 16s RNA gene.ResultsNew respiratory pathogens prompting investigation included: Mycobacterium abscessus(2), Stenotrophomonas maltophilia(3), Pseudomonas aeruginosa(3), Pseudomonas fluorescens(1), Nocardia spp.(1), and Achromobacter xylosoxidans(1). A median 25 organisms/patient were cultured from sputum. A median 125 organisms/home were cultured from environmental sites. Several organisms commonly found in the CF lung microbiome were identified within the home environments of these patients. Concordant species included members of the following genera: Brevibacterium(1), Microbacterium(1), Staphylococcus(3), Stenotrophomonas(2), Streptococcus(2), Sphingomonas(1), and Pseudomonas(4). PFGE confirmed related strains (one episode each of Sphinogomonas and P. aeruginosa) from the environment and airways were identified in two patients. Culture-independent assessment confirmed that many organisms were not identified using culture-dependent techniques.ConclusionsMembers of the CF microbiota can be found as constituents of the home environment in individuals with CF. While the majority of isolates from the home environment were not genetically related to those isolated from the lower airways of individuals with CF suggesting alternate sources of infection were more common, a few genetically related isolates were indeed identified. As such, the home environment may rarely serve as either the source of infection or a persistent reservoir for re-infection after clearance.
Quorum sensing (QS) contributes to the virulence of Pseudomonas aeruginosa and Burkholderia cepacia complex lung infections. P. aeruginosa QS mutants are frequently isolated from patients with cystic fibrosis. The objective of this study was to determine whether similar adaptations occur over time in B. cepacia complex isolates. Forty-five Burkholderia multivorans and Burkholderia cenocepacia sequential isolates from patients with cystic fibrosis were analyzed for N-acyl-homoserine lactone activity. All but one isolate produced N-acyl-homoserine lactones. The B. cenocepacia N-acyl-homoserine lactone-negative isolate contained mutations in cepR and cciR. Growth competition assays were performed that compared B. cenocepacia clinical and laboratory defined wild-type and QS mutants. Survival of the laboratory wild-type and QS mutants varied, dependent on the mutation. The clinical wild-type isolate demonstrated a growth advantage over its QS mutant. These data suggest that there is a selective advantage for strains with QS systems and that QS mutations do not occur at a high frequency in B. cepacia complex isolates.
After the publication of this paper, an error was noticed in the sentences 'Phylogenetic analysis using the 16S-23S rRNA internal transcribed spacer region revealed that the AMZ-associated Prochlorococcus assemblages are mainly composed of two novel LL ecotypes (termed LL-V and LL-VI), which correspond to basal groups linking Prochlorococcus with marine Synechococcus (Lavin et al., 2010), the other dominant marine picocyanobacteria. However, no genomic or picocyanobacterium information exists for these AMZ lineages'. 'Picocyanobacteria' should be 'picocyanobacterium' and in the next sentence, picocyanobacterium should be 'physiological'.The publishers would like to apologise for any inconvenience caused by this error. These changes have now been implemented in the paper.
Chronic bacterial colonization of the airways with opportunistic pathogens is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Burkholderia cepacia complex (Bcc) organisms pose a particular challenge in CF lung disease, due in part to their ability to trigger a fulminant pneumonia. This study compares the U937 macrophage response to two Bcc species, B. cenocepacia and Burkholderia multivorans, against Pseudomonas aeruginosa and Staphylococcus aureus. The two Bcc strains demonstrated higher levels of U937 macrophage internalization compared with both P. aeruginosa and S. aureus. Both the Bcc strains also stimulated significantly greater levels of tumor necrosis factor-α and interleukin-1β from macrophages when compared with P. aeruginosa. Further examination of the macrophage response to B. multivorans demonstrated that the lipopolysaccharide component of these bacteria was a potent inducer of proinflammatory cytokines and was shown to signal predominantly through the c-Jun N-terminal kinase mitogen-activated protein kinase pathway. These studies further characterize the host response to Bcc and in particular B. multivorans, now the predominant Bcc species in many CF populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.