Extracellular matrix (ECM) remodeling is one of the underlying mechanisms in cardiovascular diseases. Cathepsin cysteine proteases have a central role in ECM remodeling and have been implicated in the development and progression of cardiovascular diseases. Cathepsins also show differential expression in various stages of atherosclerosis, and in vivo knockout studies revealed that deficiency of cathepsin K or S reduces atherosclerosis. Furthermore, cathepsins are involved in lipid metabolism. Cathepsins have the capability to degrade low-density lipoprotein and reduce cholesterol efflux from macrophages, aggravating foam cell formation. Although expression studies also demonstrated differential expression of cathepsins in cardiovascular diseases like aneurysm formation, neointima formation, and neovascularization, in vivo studies to define the exact role of cathepsins in these processes are lacking. Evaluation of the feasibility of cathepsins as a diagnostic tool revealed that serum levels of cathepsins L and S seem to be promising as biomarkers in the diagnosis of atherosclerosis, whereas cathepsin B shows potential as an imaging tool. Furthermore, cathepsin K and S inhibitors showed effectiveness in (pre) clinical evaluation for the treatment of osteoporosis and osteoarthritis, suggesting that cathepsin inhibitors may also have therapeutic effects for the treatment of atherosclerosis.
, a cluster of cases of pneumonia of unknown etiology were reported linked to a market in Wuhan, China 1. The causative agent was identified as the species Severe acute respiratory syndrome-related coronavirus and was named SARS-CoV-2 (ref. 2). By 16 April the virus had spread to 185 different countries, infected over 2,000,000 people and resulted in over 130,000 deaths 3. In the Netherlands, the first case of SARS-CoV-2 was notified on 27 February. The outbreak started with several different introductory events from Italy, Austria, Germany and France followed by local amplification in, and later also outside, the south of the Netherlands. The combination of near to real-time whole-genome sequence analysis and epidemiology resulted in reliable assessments of the extent of SARS-CoV-2 transmission in the community, facilitating early decision-making to control local transmission of SARS-CoV-2 in the Netherlands. We demonstrate how these data were generated and analyzed, and how SARS-CoV-2 whole-genome sequencing, in combination with epidemiological data, was used to inform public health decision-making in the Netherlands. Whole-genome sequencing (WGS) is a powerful tool to understand the transmission dynamics of outbreaks and inform outbreak control decisions 4-7. Evidence of this was seen during the 2014-2016 West African Ebola outbreak when real-time WGS was used to help public health decision-making, a strategy dubbed 'precision public health pathogen genomics' 8,9. Immediate sharing and analysis of data during outbreaks is now recommended as an integral part of outbreak response 10-12. Feasibility of real-time WGS requires access to sequence platforms that provide reliable sequences, access to metadata for interpretation, and data analysis at high speed and low cost. Therefore, WGS for outbreak support is an active area of research. Nanopore sequencing has been employed in recent outbreaks of Usutu, Ebola, Zika and yellow fever virus owing to the ease of use and relatively low start-up cost 4-7. The robustness of this method has recently been validated using Usutu virus 13,14. In the Netherlands, the first COVID-19 case was confirmed on 27 February and WGS was performed in near to real-time using an amplicon-based sequencing approach. From 22 January, symptomatic travelers from countries where SARS-CoV-2 was known to circulate were routinely tested. The first case of SARS-CoV-2 infection in the Netherlands was identified on 27 February in a person with recent travel history to Italy and an additional case was identified one day later, also in a person with recent travel history to Italy. The genomes of these first two positive samples were generated and analyzed by 29 February. These two viruses clustered differently in the phylogenetic tree, confirming separate introductions (Fig. 1a). The advice to test hospitalized patients with serious respiratory infections was issued on 24 February and subsequent attempts to identify possible local transmission chains triggered testing for SARS-CoV-2 on a large scale in h...
Background-Cathepsin K (catK), a lysosomal cysteine protease, was identified in a gene-profiling experiment that compared human early plaques, advanced stable plaques, and advanced atherosclerotic plaques containing a thrombus, where it was highly upregulated in advanced stable plaques. Methods and Results-To assess the function of catK in atherosclerosis, catK Ϫ/Ϫ /apolipoprotein (apo) E Ϫ/Ϫ mice were generated. At 26 weeks of age, plaque area in the catK Ϫ/Ϫ /apoE Ϫ/Ϫ mice was reduced (41.8%) owing to a decrease in the number of advanced lesions as well as a decrease in individual advanced plaque area. This suggests an important role for catK in atherosclerosis progression. Advanced plaques of catK Ϫ/Ϫ /apoE Ϫ/Ϫ mice showed an increase in collagen content. Medial elastin fibers were less prone to rupture than those of apoE Ϫ/Ϫ mice. Although the relative macrophage content did not differ, individual macrophage size increased. In vitro studies of bone marrow derived-macrophages confirmed this observation. Scavenger receptor-mediated uptake (particularly by CD36) of modified LDL increased in the absence of catK, resulting in an increased macrophage size because of increased cellular storage of cholesterol esters, thereby enlarging the lysosomes.
To rapidly assess possible community transmission in Noord-Brabant, the Netherlands, healthcare workers (HCW) with mild respiratory complaints and without epidemiological link (contact with confirmed case or visited areas with active circulation) were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Within 2 days, 1,097 HCW in nine hospitals were tested; 45 (4.1%) were positive. Of six hospitals with positive HCW, two accounted for 38 positive HCW. The results informed local and national risk management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.