Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor (SIPMSM), it is important to accurately calculate the temperature field distribution of SIPMSM, and a magnetic-thermal coupling method is proposed. The magnetic-thermal coupling mechanism is analyzed. The thermal network model and finite element model are built by this method, respectively. The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load, and the relationship between the load and temperature field is researched under the condition of the synchronous speed. In addition, the equivalent thermal network model is used to verify the magnetic-thermal coupling method. Then the temperatures of various nodes are obtained. The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method, which can be applied to other permanent magnet motors with complex structures. Index Terms-Equivalent thermal network method, magnetic-thermal coupling method, power frequency, iron loss, surface-mounted and interior permanent magnet synchronous motor(SIPMSM), temperature field.
This paper proposes optimal stator skewed slot analytical method for cogging torque reduction in surface-interior permanent magnet synchronous motor(SIPMSM) and analyzes the characteristics of SIPMSM. The series-parallel equivalent magnetic circuit models(EMCMs) of SIPMSM is built based on the characteristics of magnetic circuits, which is used to design the basic electromagnetic parameters of SIPMSM. Analytical expressions of cogging torque are derived from applying analytical techniques. Stator skewed slot for cogging torque minimum is adopted, and the stator skewed slot pitch is confirmed based on the analytical expressions of the resultant cogging torque. The cogging torque, torque ripple, back electromotive force(back-EMF), power-angle characteristics, efficiency and power factor of SIPMSM are analyzed by establishing 3-dimensional finite element model(3-D-FED) of SIPMSM with stator skewed slot and straight slot. It is shown that the comprehensive performance of optimized SIPMSM is improved as confirmed by finite element analysis and analytical calculation results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.