The microseismicity associated with hydraulic fracturing in unconventional reservoir (i.e. shale gas play) has been investigated in the past several decades. Few experimental studies with respect to the focal mechanism and stress inversion was conducted, especially for Glutenite reservoir. In this study, the glutenite core was taken from the underground of 2600 m. Next, we performed scaled hydraulic fracturing tests on the cubic core (50×50×50mm) under geological principle stress condition in true tri-axial stress cell. Meanwhile, we monitored wellbore and pore pressure, and micro-seismic events during the fracture propagation from six faces of the cubic rock. Micro-seismic survey and events were interpreted to identify the induced fractures distribution in three dimension. Source mechanism and stress inversion were analyzed by moment tensor decomposition.
The correlation of failure plane from microseismicity and tested sample implied that the microseismic events were accurately localized. The distribution of microseismic events from secondary and reopening tests indicated that the hydraulic fracturing induced microseismicity are mainly caused by significant tip effect (i.e. reactivate preexisting natural fractures). Based on source mechanism analysis, we found that the most of the failure are dominated by double-couple (DC). The correlation between original principle stress state and the one from STESI inversion indicated that the direction of principle stresses, especially for σ2 and σ3 inversed from reopening test, can be highly influenced by the hydraulic induced fracture or weak planes during secondary fracturing test.
Summary
Crack nucleation and rock failure processes in a fine-grained siltstone (Montney Formation) under triaxial compression are investigated using combined diagnostic techniques, including ultrasonic-wave measurement, acoustic-emission (AE) monitoring, computed tomography (CT) scanning, and thin-section imaging. The sample displays a weak-to-moderate inherent seismic anisotropy and noticeable stress-induced anisotropy prior to failure. No AE event was detected until the applied axial stress reached 95 per cent of the peak value. The signal-to-noise ratio is relatively low, however, and detectable AE events are more diffuse than those observed in highly brittle rocks. The AE locations correlate with a shear fracture zone imaged by CT scanning. AE moment-tensor analysis reveals that events with larger relative magnitudes are characterized by high volumetric (tensile or compressive) components, and the initiation of the failure zone is dominated by combined shear-tensile failure. Stress inversion of the AE events with high tensile components is in good agreement with the known applied stress. Microscopic imaging of thin sections from the failed sample shows that the failure zone is an en echelon structure consisting of a major fracture with branching micro and minor cracks. This failure mechanism is consistent with a shear-tensile source mechanism and is interpreted to be associated with the fine granular structure and mineral composition of Montney siltstone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.