Reaction of excess Fe(cp)(2) (cp = eta(5)-C(5)Me(5)) dissolved in Et(2)O with [NHex(4)](4)[S(2)Mo(18)O(62)] in acetonitrile, followed by recrystallization of the precipitated solid from N,N'-dimethylformamide (DMF), leads to isolation of the complex [Fe(cp)(2)](5)[HS(2)Mo(18)O(62)].3DMF.2Et(2)O. The solid has been characterized by microanalysis, by voltammetric analysis, by (1)H NMR, diffuse reflectance infrared, EPR, and Mössbauer spectroscopies, and by temperature-dependent magnetic susceptibility measurements. The data are consistent with the presence of a paramagnetic [Fe(cp)(2)](+) cation and a diamagnetic two-electron-reduced [HS(2)Mo(18)O(62)](5-) anion. The related salt [NBu(4)](5)[HS(2)Mo(18)O(62)].2H(2)O crystallizes in space group C2/c with a = 25.1255(3) A, b = 15.4110(2) A, c = 35.8646(4) A, beta = 105.9381(4), V = 13353.3(3) A(3), and Z = 4. The (2 e(-), 1 H(+))-reduced anion exists as the alpha-Dawson isomer, and its structure may be compared with those of the oxidized and (4 e(-), 3 H(+))-reduced anions as they exist in [NEt(4)](4)[S(2)Mo(18)O(62)].MeCN and [NBu(4)](5)[H(3)S(2)Mo(18)O(62)].4MeCN, respectively. Overall, the anion expands significantly upon the addition of two and then four electrons. However, the Mo...Mo distances along the bonds which connect the two equatorial belts decrease in the order 3.801, 3.780, and 3.736 A, making these distances the shortest for the three inequivalent sets of corner-sharing octahedra in each anion. This is consistent with the two or four added electrons localizing essentially in molecular orbitals which are bondiing with respect to interactions between the belts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.