Vegetation community composition and the above- and below-ground invertebrate communities are linked intrinsically, though few studies have assessed the impact of non-native plants on both these parts of the community together. We evaluated the differences in the above- (foliage- and ground-dwelling) and below-ground invertebrate communities in nine uninvaded plots and nine plots invaded by the annual invasive species Impatiens glandulifera, in the UK during 2007 and 2008. Over 139,000 invertebrates were identified into distinct taxa and categorised into functional feeding groups. The impact of I. glandulifera on the vegetation and invertebrate community composition was evaluated using multivariate statistics including principal response curves (PRC) and redundancy analysis (RDA). In the foliage-dwelling community, all functional feeding groups were less abundant in the invaded plots, and the species richness of Coleoptera and Heteroptera was significantly reduced. In the ground-dwelling community, herbivores, detritivores, and predators were all significantly less abundant in the invaded plots. In contrast, these functional groups in the below-ground community appeared to be largely unaffected, and even positively associated with the presence of I. glandulifera. Although the cover of I. glandulifera decreased in the invaded plots in the second year of the study, only the below-ground invertebrate community showed a significant response. These results indicate that the above- and below-ground invertebrate communities respond differently to the presence of I. glandulifera, and these community shifts can potentially lead to a habitat less biologically diverse than surrounding native communities; which could have negative impacts on higher trophic levels and ecosystem functioning.
SummaryThe rust fungus, Puccinia komarovii var. glanduliferae, has been introduced into the UK for biological control of the invasive weed, Impatiens glandulifera (Himalayan balsam). However, establishment of the pathogen has differed across the country, which may be partly explained by variation in plant genotype. The aim of this study was to examine whether there is a further layer of phenotypic resistance, provided by indigenous foliar endophytic fungi. Culturable endophytes were isolated from a number of different balsam populations, and the commonest species were inoculated into ‘clean’ balsam plants, to test their interactions with the rust. We found that endophyte communities within balsam are low in diversity and become more dissimilar with increasing distance between populations. Three endophytes (Colletotrichum acutatum, Alternaria alternata and Cladosporium oxysporum) were common and appeared to be antagonistic to the rust, reducing pustule number and mitigating the effect of the pathogen on plant biomass. I. glandulifera thus partially conforms to the endophyte‐enemy release hypothesis, in that as an introduced species, it has an impoverished endophyte complement, acquired from the local environment. However, these endophytes represent a potential barrier to effective biological control and future weed control strategies need to find strains of rust that can overcome plant genetic resistance and the overlaying phenotypic resistance, conferred by endophytes. Future classical biological control programmes of weeds must therefore take into account the fungal bodyguards that invasive species may acquire in their introduced ranges.
The annual plant Impatiens glandulifera (Himalayan balsam) is the most widespread invasive non‐native weed in the British Isles. Manual control is widely used, but is costly and laborious. Recently, biological control using the rust fungus Puccinia komarovii var. glanduliferae has been trialled. We designed an experiment to assess the impact of these control methods on invertebrate communities in relation to unmanaged and uninvaded habitats, and to determine whether mycorrhizal inoculation aided post‐control recovery of these communities. Sixty invaded and twenty uninvaded field soil blocks were transplanted to the experiment site, where a mycorrhizal inoculum was added to half of all blocks. Biological and mechanical control treatments were applied to twenty invaded blocks independently; the twenty remaining invaded blocks were left intact. Above‐ and belowground invertebrate samples were collected from the blocks at the end of the growing season. Overall, aboveground invertebrate abundance increased with the removal of I. glandulifera, and several groups showed signs of recovery within one growing season. The effect of mechanical control was more variable in belowground invertebrates. Biological control did not affect aboveground invertebrate abundance but resulted in large increases in populations of belowground Collembola. Our experiment demonstrates that mechanical removal of I. glandulifera can cause rapid increases in invertebrate abundance and that its biological control with P. komarovii var. glanduliferae also has the potential to benefit native invertebrate communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.