The characterization of interactions in protein–ligand complexes is essential for research in structural bioinformatics, drug discovery and biology. However, comprehensive tools are not freely available to the research community. Here, we present the protein–ligand interaction profiler (PLIP), a novel web service for fully automated detection and visualization of relevant non-covalent protein–ligand contacts in 3D structures, freely available at . The input is either a Protein Data Bank structure, a protein or ligand name, or a custom protein–ligand complex (e.g. from docking). In contrast to other tools, the rule-based PLIP algorithm does not require any structure preparation. It returns a list of detected interactions on single atom level, covering seven interaction types (hydrogen bonds, hydrophobic contacts, pi-stacking, pi-cation interactions, salt bridges, water bridges and halogen bonds). PLIP stands out by offering publication-ready images, PyMOL session files to generate custom images and parsable result files to facilitate successive data processing. The full python source code is available for download on the website. PLIP's command-line mode allows for high-throughput interaction profiling.
BackgroundProtein interactions are essential for coordinating cellular functions. Proteomic studies have already elucidated a huge amount of protein-protein interactions that require detailed functional analysis. Understanding the structural basis of each individual interaction through their structural determination is necessary, yet an unfeasible task. Therefore, computational tools able to predict protein binding regions and recognition modes are required to rationalize putative molecular functions for proteins. With this aim, we previously created SCOWLP, a structural classification of protein binding regions at protein family level, based on the information obtained from high-resolution 3D protein-protein and protein-peptide complexes.DescriptionWe present here a new version of SCOWLP that has been enhanced by the inclusion of protein-nucleic acid and protein-saccharide interactions. SCOWLP takes interfacial solvent into account for a detailed characterization of protein interactions. In addition, the binding regions obtained per protein family have been enriched by the inclusion of predicted binding regions, which have been inferred from structurally related proteins across all existing folds. These inferences might become very useful to suggest novel recognition regions and compare structurally similar interfaces from different families.ConclusionsThe updated SCOWLP has new functionalities that allow both, detection and comparison of protein regions recognizing different types of ligands, which include other proteins, peptides, nucleic acids and saccharides, within a solvated environment. Currently, SCOWLP allows the analysis of predicted protein binding regions based on structure-based inferences across fold space. These predictions may have a unique potential in assisting protein docking, in providing insights into protein interaction networks, and in guiding rational engineering of protein ligands. The newly designed SCOWLP web application has an improved user-friendly interface that facilitates its usage, and is available at http://www.scowlp.org.
The measurement of compressor or turbine blades is very interesting for quality control and inspection checks. Especially for mechanical wear valuation it is important to inspect the whole geometry of a blade with main focus on the airfoil. This 3D measurement task, which involves many identical components, and high accuracy, as well as high point density in the airfoil edge regions, demands detailed planning of the appropriate 3D-measuring machine, measurement planning, reproducibility as well as analysis and provision of measuring values for the user. Preliminary investigations were carried out to select an appropriate measuring method providing both a complete geometric and as automatic as possible acquisition of blade geometries. Another constraint was that the technique had to make efficient use of time and be accurate. A data processing routine using software developed at TU Dresden is used for automated analysis and provision of measuring values for the user. The approach to linking automated complete 3D data acquisition by means of strip projection with automated analysis of measuring data opens up the option of using it as an efficient 3D-measuring machine for high accuracy requirements and higher quantities. The method shown can be transferred to other objects that need to be scanned in larger quantities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.