The field of energy forecasting has attracted many researchers from different fields (e.g., meteorology, data sciences, mechanical or electrical engineering) over the last decade. Solar forecasting is a fast-growing subdomain of energy forecasting. Despite several previous attempts, the methods and measures used for verification of deterministic (also known as single-valued or point) solar forecasts are still far from being standardized, making forecast analysis and comparison difficult. To analyze and compare solar forecasts, the well-established Murphy-Winkler framework for distribution-oriented forecast verification is recommended as a standard practice. This framework examines aspects of forecast quality, such as reliability, resolution, association, or discrimination, and analyzes the joint distribution of forecasts and observations, which contains all time-independent information relevant to verification. To verify forecasts, one can use any graphical display or mathematical/statistical measure to provide insights and summarize the aspects of forecast quality. The majority of graphical methods and accuracy measures known to solar forecasters are specific methods under this general framework. Additionally, measuring the overall skillfulness of forecasters is also of general interest. The use of the root mean square error (RMSE) skill score based on the optimal convex combination of climatology and persistence methods is highly recommended. By standardizing the accuracy measure and reference forecasting method, the RMSE skill score allows-with appropriate caveats-comparison of forecasts made using different models, across different locations and time periods.
The local generation of renewable electricity through roof-mounted photovoltaic (PV) systems on buildings in urban areas provides huge potentials for the mitigation of greenhouse gas emissions. This contribution presents a new method to provide local decision makers with tools to assess the remaining PV potential within their respective communities. It allows highly detailed analyses without having to rely on 3D city models, which are often not available. This is achieved by a combination of publicly available geographical building data and aerial images that are analyzed using image recognition and machine learning approaches. The method also employs sophisticated algorithms for irradiance simulation and power generation that exhibit a higher accuracy than most existing PV potential studies. The method is demonstrated with an application to the city of Freiburg, for which a technical PV electricity generation potential of about 524 GWh/a is identified. A validation with a 3D city model shows that the correct roof azimuth can be determined with an accuracy of about 70% and existing solar installations can be detected with an accuracy of about 90%. This demonstrates that the method can be employed for spatially and temporally detailed PV potential assessments in arbitrary urban areas when only public geographical building data is available instead of exact 3D city model data. Future work will focus on methodological improvements as well as on the integration of the method within an urban energy system modeling framework
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.