In the present study, we used a mouse model of chronic intermittent ethanol (CIE) exposure to examine how CIE alters the plasticity of the medial prefrontal cortex (mPFC). In acute slices obtained either immediately or 1-week after the last episode of alcohol exposure, voltage-clamp recording of excitatory post-synaptic currents (EPSCs) in mPFC layer V pyramidal neurons revealed that CIE exposure resulted in an increase in the NMDA/AMPA current ratio. This increase appeared to result from a selective increase in the NMDA component of the EPSC. Consistent with this, Western blot analysis of the postsynaptic density fraction showed that while there was no change in expression of the AMPA GluR1 subunit, NMDA NR1 and NRB subunits were significantly increased in CIE exposed mice when examined immediately after the last episode of alcohol exposure. Unexpectedly, this increase in NR1 and NR2B was no longer observed after 1-week of withdrawal in spite of a persistent increase in synaptic NMDA currents. Analysis of spines on the basal dendrites of layer V neurons revealed that while the total density of spines was not altered, there was a selective increase in the density of mushroom-type spines following CIE exposure. Examination of NMDA-receptor mediated spike-timing-dependent plasticity (STDP) showed that CIE exposure was associated with altered expression of long-term potentiation (LTP). Lastly, behavioral studies using an attentional set-shifting task that depends upon the mPFC for optimal performance revealed deficits in cognitive flexibility in CIE exposed mice when tested up to 1-week after the last episode of alcohol exposure. Taken together, these observations are consistent with those in human alcoholics showing protracted deficits in executive function, and suggest these deficits may be associated with alterations in synaptic plasticity in the mPFC.
F1FO-ATP synthase is critical for mitochondrial functions. The deregulation of this enzyme results in dampened mitochondrial oxidative phosphorylation (OXPHOS) and activated mitochondrial permeability transition (mPT), defects which accompany Alzheimer’s disease (AD). However, the molecular mechanisms that connect F1FO-ATP synthase dysfunction and AD remain unclear. Here, we observe selective loss of the oligomycin sensitivity conferring protein (OSCP) subunit of the F1FO-ATP synthase and the physical interaction of OSCP with amyloid beta (Aβ) in the brains of AD individuals and in an AD mouse model. Changes in OSCP levels are more pronounced in neuronal mitochondria. OSCP loss and its interplay with Aβ disrupt F1FO-ATP synthase, leading to reduced ATP production, elevated oxidative stress and activated mPT. The restoration of OSCP ameliorates Aβ-mediated mouse and human neuronal mitochondrial impairments and the resultant synaptic injury. Therefore, mitochondrial F1FO-ATP synthase dysfunction associated with AD progression could potentially be prevented by OSCP stabilization.
BackgroundThe importance of dopamine (DA) for prefrontal cortical (PFC) cognitive functions is widely recognized, but its mechanisms of action remain controversial. DA is thought to increase signal gain in active networks according to an inverted U dose-response curve, and these effects may depend on both tonic and phasic release of DA from midbrain ventral tegmental area (VTA) neurons.Methodology/Principal FindingsWe used patch-clamp recordings in organotypic co-cultures of the PFC, hippocampus and VTA to study DA modulation of spontaneous network activity in the form of Up-states and signals in the form of synchronous EPSP trains. These cultures possessed a tonic DA level and stimulation of the VTA evoked DA transients within the PFC. The addition of high (≥1 µM) concentrations of exogenous DA to the cultures reduced Up-states and diminished excitatory synaptic inputs (EPSPs) evoked during the Down-state. Increasing endogenous DA via bath application of cocaine also reduced Up-states. Lower concentrations of exogenous DA (0.1 µM) had no effect on the up-state itself, but they selectively increased the efficiency of a train of EPSPs to evoke spikes during the Up-state. When the background DA was eliminated by depleting DA with reserpine and alpha-methyl-p-tyrosine, or by preparing corticolimbic co-cultures without the VTA slice, Up-states could be enhanced by low concentrations (0.1–1 µM) of DA that had no effect in the VTA containing cultures. Finally, in spite of the concentration-dependent effects on Up-states, exogenous DA at all but the lowest concentrations increased intracellular current-pulse evoked firing in all cultures underlining the complexity of DA's effects in an active network.Conclusions/SignificanceTaken together, these data show concentration-dependent effects of DA on global PFC network activity and they demonstrate a mechanism through which optimal levels of DA can modulate signal gain to support cognitive functioning.
Impaired inhibition is a core feature in adults with ADHD. In addition, slow RTs and high intra-individual variance in performance may reflect deficits in the regulation of activation and effort in ADHD patients. ADHD and BPD share some symptoms of behavioural dysregulation without common cognitive deficits, at least in the attentional realm.
Cognitive functions supported by neurons in the prefrontal cortex (PFC) are disrupted by acute and chronic exposure to alcohol, yet little is known about the mechanisms that underlie these effects. In the present study, in vivo and in vitro electrophysiology was used to determine the effects of ethanol on neuronal firing and network patterns of persistent activity in PFC neurons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.