The work presented in this paper provides the basis for an extension of conventional orbital forming to a new, flexible forming process. A hydraulically actuated hexapod is used to move a swage in order to extrude a work piece towards a desired shape. This paper presents an analytical model of the actuators and the dynamics of the hexapod. This model is used for developing a cascaded position control law, and for developing a simulation environment representing the machine and the work piece in an entire forming process loop. The design of the machine is briefly introduced and results of position control are presented.
The new subproject B8 ''Adhesive processing in batch technology for the manufacturing of microsystems'' has the goal to compile bases for batchable joining techniques based on adhesive systems. This paper presents an alternative adhesive bonding system, which is able to join very small parts as well as relatively big parts with high accuracy requirements. The main advantages are the possibility to apply small volumes, to pre-apply the adhesive with a temporarily delayed joining procedure and extremely short set cycles. Therefore, using hot melts can be a technologically and economically interesting alternative for the assembly and packaging of MEMS.
Nowadays, the production of 3D MEMS and MOEMS is carried out by using hybrid integration of single components, for which batch production is normally preferred. In this field, adhesive technology is one of the major joining techniques. At the Collaboration Research Center 516, a batch process based on a joining technique which uses hot melt adhesives was developed. This technique allows the coating of micro components with hot melt in a batch. The coating process is followed by the joining process. Due to this, the time between coating and joining can be designed variably. Because of the short set times of hot melt adhesives, short joining times are possible. For this assembly process adapted heat management is necessary. This paper presents adapted heating management concepts and gripping systems which allow a fast and accurate assembly of hybrid micro systems with hot melt coated components. Therefore, the chosen gripping system depends on the process and heat management concept as well as the thermal properties of the components. Furthermore, the simulative and experimental results of the heat management concepts will be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.