In this study, polymer scaffolds were fabricated from biodegradable poly(lactide-co-glycolide) (PLGA) and from non-biodegradable vinylidene fluoride-tetrafluoroethylene (VDF-TeFE) by electrospinning. These polymer scaffolds were subsequently surface-modified by sputtering titanium targets in an argon atmosphere. Direct current pulsed magnetron sputtering was applied to prevent a significant influence of discharge plasma on the morphology and mechanical properties of the nonwoven polymer scaffolds. The scaffolds with initially hydrophobic properties show higher hydrophilicity and absorbing properties after surface modification with titanium. The surface modification by titanium significantly increases the cell adhesion of both the biodegradable and the non-biodegradable scaffolds. Immunocytochemistry investigations of human gingival fibroblast cells on the surface-modified scaffolds indicate that a PLGA scaffold exhibits higher cell adhesion than a VDF-TeFE scaffold.
In this work, the micro-arc oxidation method is used to fabricate surface-modified complex-structured titanium implant coatings to improve biocompatibility. Depending on the utilized electrolyte solution and micro-arc oxidation process parameters, three different types of coatings (one of them—oxide, another two—calcium phosphates) were obtained, differing in their coating thickness, crystallite phase composition and, thus, with a significantly different biocompatibility. An analytical approach based on X-ray computed tomography utilizing software-aided coating recognition is employed in this work to reveal their structural uniformity. Electrochemical studies prove that the coatings exhibit varying levels of corrosion protection. In vitro and in vivo experiments of the three different micro-arc oxidation coatings prove high biocompatibility towards adult stem cells (investigation of cell adhesion, proliferation and osteogenic differentiation), as well as in vivo biocompatibility (including histological analysis). These results demonstrate superior biological properties compared to unmodified titanium surfaces. The ratio of calcium and phosphorus in coatings, as well as their phase composition, have a great influence on the biological response of the coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.