Inherited defects in signaling pathways downstream of the insulin receptor have long been suggested to contribute to human Type 2 diabetes mellitus. Here we describe a mutation in the gene encoding the protein kinase AKT2/PKBβ in a family that shows autosomal dominant inheritance of severe insulin resistance and diabetes mellitus. Expression of the mutant kinase in cultured cells disrupted insulin signaling to metabolic end-points and inhibited the function of coexpressed, wild type AKT. These findings demonstrate the central importance of AKT signaling to insulin sensitivity in humans.Most forms of diabetes are likely to be polygenic in origin, although a number of monogenic forms are being recognised (1, 2). Although rare, these monogenic examples offer insights into the function of the affected gene in humans as well as offering important clues to understanding more common forms.We have been screening genomic DNA from 104 unrelated subjects with severe insulin resistance for mutations in genes that are implicated in insulin signalling. We identified a † To whom correspondence should be addressed. E-mail: sorahill@hgmp.mrc.ac.uk. * These authors contributed equally to this work. Europe PMC Funders Group Europe PMC Funders Author ManuscriptsEurope PMC Funders Author Manuscripts missense mutation in the serine/threonine kinase gene AKT2 in one Caucasian proband.AKT2 (also known as PKBβ) is highly expressed in insulin sensitive tissues and is activated in response to growth factors and related stimuli (3, 4) a process that requires its phosphorylation by the phosphoinositide-3 phosphate-dependent kinase activities designated PDK1 and PDK2 (3). The proband, (iii)/1 (Fig. 1D), is a non-obese 34 year old female who developed diabetes mellitus at 30 years of age. The proband, her non-obese mother, (ii)/2, maternal grandmother, (i)/2, and a maternal uncle, (ii)/3, were all heterozygous for a G to A substitution predicted to result in an R to H substitution at amino acid 274 (Fig. 1 A, B). All were markedly hyperinsulinemic (Table S1) and the mother and maternal grandmother developed diabetes mellitus in their late 30′s. Three other first-degree relatives available for study were all clinically normal with normal fasting glucose and insulin and were homozygous for the wild-type AKT2 sequence ( Fig. 1D and Table S1). This mutation was not found in genomic DNA of 1500 Caucasian control subjects from the UK.R274 forms part of an RD sequence motif within the catalytic loop of the AKT2 kinase domain that is invariant in AKT isoforms in all species, and is also highly conserved within the protein kinase family (Fig. 1C) (5). The RD motif includes the invariant D residue (D275 of AKT2) that performs an essential catalytic function in all protein kinases.R274 is positioned in the core of the catalytic domain, forming critical hydrogen bonds with the phosphate moiety of phosphoT309 in the activation segment permitting correct positioning the substrate peptide relative to the catalytic base and adenosine triphosphate (A...
Currently, we observe an epidemic expansion of diabetes mellitus. In subjects with Type 2 diabetes the resistance of fat, muscle and liver to insulin is the central pathophysiological event in the development of this disease. Genetic and environmental factors play a major role in this process, although the precise pathogenesis of insulin resistance and Type 2 diabetes is still largely unknown. However, recent studies have contributed to a deeper understanding of the molecular mechanisms underlying this process. In this review we therefore summarize the current developments in understanding the pathophysiological process of insulin resistance and Type 2 diabetes. Among the many molecules involved in the intracellular processing of the signal provided by insulin, insulin receptor substrate (IRS)-2, the protein kinase B (PKB)-beta isoform and the forkhead transcription factor Foxo1a (FKHR) are of particular interest in this context as recent data have provided strong evidence that dysfunction of these proteins results in insulin resistance in-vivo. Furthermore, we have now increasing evidence that the adipose tissue not only produces free fatty acids that contribute to insulin resistance, but also acts as a relevant endocrine organ producing mediators (adipokines) that can modulate insulin signalling. The identification of the molecular pathophysiological mechanisms of insulin resistance and Type 2 diabetes is essential for the development of novel and more effective therapies to better treat our patients with insulin resistance and Type 2 diabetes.
PGC1 alpha is a co-activator involved in adaptive thermogenesis, fatty-acid oxidation and gluconeogenesis. We describe the identification of several isoforms of a new human PGC1 alpha homologue, cloned independently and named PGC1 beta. The human PGC1 beta gene is localized to chromosome 5, has 13 exons and spans more than 78 kb. Two different 5' and 3' ends due to differential splicing were identified by rapid amplification of cDNA ends PCR and screening of human cDNA libraries. We show that PGC1 beta variants in humans, mice and rats are expressed predominantly in heart, brown adipose tissue, brain and skeletal muscle. PGC1 beta expression, unlike PGC1 alpha, is not up-regulated in brown adipose tissue in response to cold or obesity. Fasting experiments showed that PGC1 alpha, but not PGC1 beta, is induced in liver and this suggests that only PGC1 alpha is involved in the hepatic gluconeogenesis. No changes in PGC1 beta gene expression were observed associated with exercise. Human PGC1 beta-1a and -2a isoforms localized to the cell nucleus and, specifically, the isoform PGC1 beta-1a co-activated peroxisome-proliferator-activated receptor-gamma, -alpha and the thyroid hormone receptor beta1. Finally, we show that ectopic expression PGC1 beta leads to increased mitochondrial number and basal oxygen consumption. These results suggest that PGC1 beta may play a role in constitutive adrenergic-independent mitochondrial biogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.