Dominance constraints are logical descriptions of trees that are widely used in computational linguistics. Their general satisfiability problem is known to be NPcomplete. Here we identify normal dominance constraints and present an efficient graph algorithm for testing their satisfiability in deterministic polynomial time. Previously, no polynomial time algorithm was known.
Abstract. The NP-hard Colorful Components problem is, given a vertex-colored graph, to delete a minimum number of edges such that no connected component contains two vertices of the same color. It has applications in multiple sequence alignment and in multiple network alignment where the colors correspond to species. We initiate a systematic complexity-theoretic study of Colorful Components by presenting NP-hardness as well as fixed-parameter tractability results for different variants of Colorful Components. We also perform experiments with our algorithms and additionally develop an efficient and very accurate heuristic algorithm clearly outperforming a previous min-cut-based heuristic on multiple sequence alignment data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.