Abstract-Programming accelerators such as GPUs with low-level APIs and languages such as OpenCL and CUDA is difficult, error-prone, and not performance-portable. Automatic parallelization and domain specific languages (DSLs) have been proposed to hide complexity and regain performance portability. We present PENCIL, a rigorously-defined subset of GNU C99-enriched with additional language constructs-that enables compilers to exploit parallelism and produce highly optimized code when targeting accelerators. PENCIL aims to serve both as a portable implementation language for libraries, and as a target language for DSL compilers.We implemented a PENCIL-to-OpenCL backend using a state-of-the-art polyhedral compiler. The polyhedral compiler, extended to handle data-dependent control flow and non-affine array accesses, generates optimized OpenCL code. To demonstrate the potential and performance portability of PENCIL and the PENCIL-to-OpenCL compiler, we consider a number of image processing kernels, a set of benchmarks from the Rodinia and SHOC suites, and DSL embedding scenarios for linear algebra (BLAS) and signal processing radar applications (SpearDE), and present experimental results for four GPU platforms: AMD Radeon HD 5670 and R9 285, NVIDIA GTX 470, and ARM Mali-T604.
In this study we explain the implementation of a sphere detector for spatial multiplexing in broadband wireless systems using high-level synthesis (HLS) tools. These modern FPGA design tools accept C/C?? descriptions as input specifications, and automatically generate a register transfer level (RTL) description for FPGA implementation using traditional FPGA implementation tools. We have used AutoESL's AutoPilot HLS tool to implement this demanding algorithm on a Virtex-5 running at a clock frequency of 225 MHz. The obtained results show that these modern HLS tools produce Quality of Results competitive to the ones obtained using a traditional RTL design approach, while significantly abstracting the designer from the low-level FPGA implementation details.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.