Plants deploy cell-surface and intracellular leucine rich-repeat domain (LRR) immune receptors to detect pathogens 1 . LRR receptor kinases and LRR receptor proteins at the plasma membrane recognize microorganism-derived molecules to elicit pattern-triggered immunity (PTI), whereas nucleotide-binding LRR proteins detect microbial effectors inside cells to confer effector-triggered immunity (ETI). Although PTI and ETI are initiated in different host cell compartments, they rely on the transcriptional activation of similar sets of genes 2 , suggesting pathway convergence upstream of nuclear events. Here we report that PTI triggered by the Arabidopsis LRR receptor protein RLP23 requires signalling-competent dimers of the lipase-like proteins EDS1 and PAD4, and of ADR1 family helper nucleotide-binding LRRs, which are all components of ETI. The cell-surface LRR receptor kinase SOBIR1 links RLP23 with EDS1, PAD4 and ADR1 proteins, suggesting the formation of supramolecular complexes containing PTI receptors and transducers at the inner side of the plasma membrane. We detected similar evolutionary patterns in LRR receptor protein and nucleotide-binding LRR genes across Arabidopsis accessions; overall higher levels of variation in LRR receptor proteins than in LRR receptor kinases are consistent with distinct roles of these two receptor families in plant immunity. We propose that the EDS1-PAD4-ADR1 node is a convergence point for defence signalling cascades, activated by both surface-resident and intracellular LRR receptors, in conferring pathogen immunity.Arabidopsis thaliana (hereafter Arabidopsis) cell-surface LRR receptor kinases (LRR-RKs) and LRR receptor protein (LRR-RP)-SOBIR1 complexes recruit the co-receptor BAK1 and signal through receptor-like cytoplasmic kinases (RLCKs) to elicit PTI 3 . Intracellular coiled-coil (CC)-nucleotide-binding LRR (NLR) or TOLL-INTERLEUKIN 1 RECEP-TOR (TIR)-NLR receptors 4 require ADR1-type and NRG1-type helper NLRs (hNLRs) and the lipase-like EDS1 family proteins EDS1, PAD4 and SAG101 to confer ETI 5,6 . While the defence outputs for PTI and ETI are qualitatively similar 2 , where and how pathways activated in different cell compartments converge remain unclear. Effective plant defence relies on mutual potentiation of PTI and ETI pathways 7,8 , suggesting mechanistic links between these two tiers of the plant immune system. RLCKs PBL30 and PBL31 mediate PTIThe Arabidopsis class VII RLCK (RLCK-VII) BIK1 promotes LRR-RK-mediated PTI but is a negative regulator of LRR-RP-mediated PTI 9 . To identify RLCK-VII members with positive roles in LRR-RP-dependent PTI, we screened an Arabidopsis RLCK-VII transfer DNA mutant library 10 for ethylene production elicited by fungal pg13(At) 11 , oomycete nlp20 and bacterial eMax (which are recognized by RLP42, RLP23 and RLP1, respectively) 3 (Extended Data Fig. 1a). A pbl31 mutant was defective in response to these elicitors compared with wild-type plants (Columbia-0 (Col-0)) (Extended Data Fig. 1a). PBL31 belongs to RLCK-VII subfamily 7, together ...
Plant nucleotide-binding (NB) leucine-rich repeat (LRR) receptor (NLR) proteins function as intracellular immune receptors that perceive the presence of pathogen-derived virulence proteins (effectors) to induce immune responses. The 2 major types of plant NLRs that "sense" pathogen effectors differ in their N-terminal domains: these are Toll/interleukin-1 receptor resistance (TIR) domain-containing NLRs (TNLs) and coiled-coil (CC) domain-containing NLRs (CNLs). In many angiosperms, the RESISTANCE TO POWDERY MILDEW 8 (RPW8)-CC domain containing NLR (RNL) subclass of CNLs is encoded by 2 gene families, ACTIVATED DISEASE RESISTANCE 1 (ADR1) and N REQUIREMENT GENE 1 (NRG1), that act as "helper" NLRs during multiple sensor NLR-mediated immune responses. Despite their important role in sensor NLR-mediated immunity, knowledge of the specific, redundant, and synergistic functions of helper RNLs is limited. We demonstrate that the ADR1 and NRG1 families act in an unequally redundant manner in basal resistance, effector-triggered immunity (ETI) and regulation of defense gene expression. We define RNL redundancy in ETI conferred by some TNLs and in basal resistance against virulent pathogens. We demonstrate that, in Arabidopsis thaliana, the 2 RNL families contribute specific functions in ETI initiated by specific CNLs and TNLs. Time-resolved whole genome expression profiling revealed that RNLs and "classical" CNLs trigger similar transcriptome changes, suggesting that RNLs act like other CNLs to mediate ETI downstream of sensor NLR activation. Together, our genetic data confirm that RNLs contribute to basal resistance, are fully
Activation of nucleotide-binding leucine-rich repeat receptors (NLRs) results in immunity and a localized cell death. NLR cell death activity requires oligomerization and in some cases plasma membrane (PM) localization. The exact mechanisms underlying PM localization of NLRs lacking predicted transmembrane domains or recognizable lipidation motifs remain elusive.We used confocal microscopy, genetically encoded molecular tools and protein-lipid overlay assays to determine whether PM localization of members of the Arabidopsis HeLo-/ RPW8-like domain 'helper' NLR (RNL) family is mediated by the interaction with negatively charged phospholipids of the PM.Our results show that PM localization and stability of some RNLs and one CC-type NLR (CNL) depend on the direct interaction with PM phospholipids. Depletion of phosphatidylinositol-4-phosphate from the PM led to a mis-localization of the analysed NLRs and consequently inhibited their cell death activity. We further demonstrate homo-and hetero-association of members of the RNL family. Our results provide new insights into the molecular mechanism of NLR localization and defines an important role of phospholipids for CNL and RNL PM localization and consequently, for their function.We propose that RNLs interact with anionic PM phospholipids and that RNL-mediated cell death and immune responses happen at the PM.
Plants use both cell surface and intracellular immune receptors with leucine rich-repeat (LRRs) to detect pathogens. LRR receptor kinases (LRR-RKs) and LRR receptor-like proteins (LRR-RPs) recognize extracellular microbe-derived molecules to confer pattern-triggered immunity (PTI), while nucleotide-binding LRR (NLR) proteins detect microbial effectors inside the cell to confer effector-triggered immunity (ETI). Despite PTI and ETI signaling being initiated in different compartments, both rely on the transcriptional activation of similar sets of genes, suggesting convergence in signaling upstream of nuclear events. Here we report that two sets of molecules, helper NLRs from the ADR1 (ACTIVATED DISEASE RESISTANCE 1) family as well as lipase-like proteins EDS1 (ENHANCED DISEASE SUSCEPTIBILITY 1) and PAD4 (PHYTOALEXIN DEFICIENT 4), are required not only for ETI, but also for PTI. A further similarity is seen in the evolutionary patterns of some PTI and ETI receptor genes, with both often being highly polymorphic, and with nevertheless distinct roles of LRR-RK and LRR-RP receptors in immunity. We find that the LRR-RK SOBIR1 directly links LRR-RPs with the ADR1 helper NLR as well as EDS1 and PAD4, suggesting the formation of constitutive supramolecular signalosome complexes at the inner side of the plasma membrane. We propose that the EDS1-PAD4-ADR1 node is an essential component and convergence point for immune signaling cascades activated by both surface-resident LRR-RP receptors and intracellular NLR receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.