Our knowledge about neuronal activity in the sensorimotor cortex relies primarily on stereotyped movements which are strictly controlled via the experimental settings. It remains unclear how results can be carried over to less constrained behavior, i.e. freely moving subjects. Towards this goal, we developed a self-paced behavioral paradigm which encouraged rats to conduct different types of movements. Via bilateral electrophysiological recordings across the entire sensorimotor cortex and simultaneous paw tracking, we identified behavioral coupling of neurons with lateralization and an anterior-posterior gradient from premotor to primary sensory cortex. The structure of population activity patterns was conserved across animals, in spite of severe undersampling of the total number of neurons and variations of electrode positions across individuals. Via alignments of low-dimensional neural manifolds, we demonstrate cross-subject and cross-session generalization in a decoding task arguing for a conserved neuronal code.
Our knowledge about neuronal activity in the sensorimotor cortex relies primarily on stereotyped movements that are strictly controlled in experimental settings. It remains unclear how results can be carried over to less constrained behavior like that of freely moving subjects. Toward this goal, we developed a self-paced behavioral paradigm that encouraged rats to engage in different movement types. We employed bilateral electrophysiological recordings across the entire sensorimotor cortex and simultaneous paw tracking. These techniques revealed behavioral coupling of neurons with lateralization and an anterior–posterior gradient from the premotor to the primary sensory cortex. The structure of population activity patterns was conserved across animals despite the severe under-sampling of the total number of neurons and variations in electrode positions across individuals. We demonstrated cross-subject and cross-session generalization in a decoding task through alignments of low-dimensional neural manifolds, providing evidence of a conserved neuronal code.
Our knowledge about neuronal activity in the sensorimotor cortex relies primarily on stereotyped movements which are strictly controlled via the experimental settings. It remains unclear how results can be carried over to less constrained behavior, i.e. freely moving subjects. Towards this goal, we developed a self-paced behavioral paradigm which encouraged rats to conduct different types of movements. Via bilateral electrophysiological recordings across the entire sensorimotor cortex and simultaneous paw tracking, we identified behavioral coupling of neurons with lateralization and an anterior-posterior gradient from premotor to primary sensory cortex. The structure of population activity patterns was conserved across animals, in spite of severe undersampling of the total number of neurons and variations of electrode positions across individuals. Via alignments of low-dimensional neural manifolds, we demonstrate cross-subject and cross-session generalization in a decoding task arguing for a conserved neuronal code.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.