Mouthrot, or bacterial stomatitis, is a disease which mainly affects farmed Atlantic salmon, (Salmo salar, L.), smolts recently transferred into salt water in both British Columbia (BC), Canada, and Washington State, USA. It is a significant fish welfare issue which results in economic losses due to mortality and antibiotic treatments. The associated pathogen is Tenacibaculum maritimum, a bacterium which causes significant losses in many species of farmed fish worldwide. This bacterium has not been proven to be the causative agent of mouthrot in BC despite being isolated from affected Atlantic salmon. In this study, challenge experiments were performed to determine whether mouthrot could be induced with T. maritimum isolates collected from outbreaks in Western Canada and to attempt to develop a bath challenge model. A secondary objective was to use this model to test inactivated whole-cell vaccines for T. maritimum in Atlantic salmon smolts. This study shows that T. maritimum is the causative agent of mouthrot and that the bacteria can readily transfer horizontally within the population. Although the whole-cell oil-adjuvanted vaccines produced an antibody response that was partially cross-reactive with several of the T. maritimum isolates, the vaccines did not protect the fish under the study's conditions.
A novel Gram-stain negative, aerobic, non-flagellated, rod-shaped gliding bacterial strain, designated HFJT, was isolated from a skin lesion of a diseased Atlantic salmon (Salmo salar L.) in Finnmark, Norway. Colonies were observed to be yellow pigmented with entire and/or undulating margins and did not adhere to the agar. The 16S rRNA gene sequence showed that the strain belongs to the genus Tenacibaculum (family Flavobacteriaceae, phylum ‘Bacteroidetes’). Strain HFJT exhibits high 16S rRNA gene sequence similarity values to Tenacibaculum dicentrarchi NCIMB 14598T (97.2 %). The strain was found to grow at 2–20 °C and only in the presence of sea salts. The respiratory quinone was identified as menaquinone 6 and the major fatty acids were identified as summed feature 3 (comprising C16:1 ω7c and/or iso-C15:0 2-OH), iso-C15:0, anteiso-C15:0, iso-C15:1 and iso-C15:0 3-OH. The DNA G+C content was determined to be 34.1 mol%. DNA–DNA hybridization and comparative phenotypic and genetic tests were performed with the phylogenetically closely related type strains, T. dicentrarchi NCIMB 14598T and Tenacibaculumovolyticum NCIMB 13127T. These data, as well as phylogenetic analyses, suggest that strain HFJT should be classified as a representative of a novel species in the genus Tenacibaculum, for which the name Tenacibaculum finnmarkense sp. nov. is proposed; the type strain is HFJ T = (DSM 28541T = NCIMB 42386T).
Mouthrot, caused by Tenacibaculum maritimum is a significant disease of farmed Atlantic salmon, Salmo salar on the West Coast of North America. Smolts recently transferred into saltwater are the most susceptible and affected fish die with little internal or external clinical signs other than the characteristic small (usually < 5 mm) yellow plaques that are present inside the mouth. The mechanism by which these smolts die is unknown. This study investigated the microscopic pathology (histology and scanning electron microscopy) of bath infected smolts with Western Canadian T. maritimum isolates TmarCan15-1, TmarCan16-1 and TmarCan16-5 and compared the findings to what is seen in a natural outbreak of mouthrot. A real-time RT-PCR assay based on the outer membrane protein A specific for T. maritimum was designed and used to investigate the tissue tropism of the bacteria. The results from this showed that T. maritimum is detectable internally by real-time RT-PCR. This combined with the fact that the bacteria can be isolated from the kidney suggests that T. maritimum becomes systemic. The pathology in the infected smolts is primarily mouth lesions, including damaged tissues surrounding the teeth; the disease is similar to periodontal disease in mammals. The pathological changes are focal, severe, and occur very rapidly with little associated inflammation. Skin lesions are more common in experimentally infected smolts than in natural outbreaks, but this could be an artefact of the challenge dose, handling and tank used during the experiments.
This study presents the first isolation of Tenacibaculum maritimum from farmed Atlantic Salmon Salmo salar in Chile. The isolate, designated T. maritimum Ch-2402, was isolated from gills of Atlantic Salmon at a farm located in region X, Los Lagos, Chile, during the harmful algal bloom caused by Pseudochattonella spp. in February 2016. The algal bloom is reported to have caused 40,000 metric tons of mortality in this salmon farming area. The bacterium T. maritimum, which causes tenacibaculosis, is recognized as an important pathogen of marine fish worldwide. Genetic, phylogenetic, and phenotypic characterizations were used to describe the T. maritimum Ch-2402 isolate. The isolate was similar to the type strain of T. maritimum but was genetically unique. Tenacibaculum dicentrarchi isolates were also recovered during sampling from the same farm. Based on the fact that T. maritimum has been shown to cause disease in Atlantic Salmon in other regions, the presence of this bacterium poses a potential risk of disease to fish in the Chilean aquaculture industry. Received November 6, 2016; accepted May 29, 2017.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.