Introduction: Accelerometer-based measurements of physical activity types are commonly used to replace self-reports. To advance the field, it is desirable that such measurements allow accurate detection of key daily physical activity types. This study aimed to evaluate the performance of a machine learning classifier for detecting sitting, standing, lying, walking, running, and cycling based on a dual versus single accelerometer setups during free-living. Methods: Twenty-two adults (mean age [SD, range] 38.7 [14.4, 25–68] years) were wearing two Axivity AX3 accelerometers positioned on the low back and thigh along with a GoPro camera positioned on the chest to record lower body movements during free-living. The labeled videos were used as ground truth for training an eXtreme Gradient Boosting classifier using window lengths of 1, 3, and 5 s. Performance of the classifier was evaluated using leave-one-out cross-validation. Results: Total recording time was ∼38 hr. Based on 5-s windowing, the overall accuracy was 96% for the dual accelerometer setup and 93% and 84% for the single thigh and back accelerometer setups, respectively. The decreased accuracy for the single accelerometer setup was due to a poor precision in detecting lying based on the thigh accelerometer recording (77%) and standing based on the back accelerometer recording (64%). Conclusion: Key daily physical activity types can be accurately detected during free-living based on dual accelerometer recording, using an eXtreme Gradient Boosting classifier. The overall accuracy decreases marginally when predictions are based on single thigh accelerometer recording, but detection of lying is poor.
Actuation delay poses a challenge for robotic arms and cranes. This is especially the case in dynamic environments where the robot arm or the objects it is trying to manipulate are moved by exogenous forces. In this paper, we consider the task of using a robotic arm to compensate for relative motion between two vessels at sea. We construct a hybrid controller that combines an Inverse Kinematic (IK) solver with a Reinforcement Learning (RL) agent that issues small corrections to the IK input. The solution is empirically evaluated in a simulated environment under several sea states and actuation delays. We observe that more intense waves and larger actuation delays have an adverse effect on the IK controller's ability to compensate for vessel motion. The RL agent is shown to be effective at mitigating large parts of these errors, both in the average case and in the worst case. Its modest requirement for sensory information, combined with the inherent safety in only making small adjustments, also makes it a promising approach for real-world deployment.
The alignment and calibration workflows at the Compact Muon Solenoid (CMS) experiment are fundamental to provide a high quality physics data and to maintain the design performance of the experiment. To facilitate the operational efforts required by the experiment, the alignment and calibration team has developed and deployed a set of web-based applications to search, navigate and prepare a consistent set of calibrations to be consumed in reconstruction of data for physics, accessible through the Condition DB Browser. The Condition DB Browser hosts also various data management tools, including a visualization tool that allows to easily inspect alignment an calibration contents, an user-defined notification agent for delivering updates on modification to the database, a logging service for the user and the automatic online-to-offline condition uploads. In this paper we report on the operational experience of this web application from 2017 data taking, with focus on new features and tools incorporated during this period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.