Bacillus spp. produce a variety of compounds involved in the biocontrol of plant pathogens and promotion of plant growth, which makes them potential candidates for most agricultural and biotechnological applications. Bacilli exhibit antagonistic activity by excreting extracellular metabolites such as antibiotics, cell wall hydrolases, and siderophores. Additionally, Bacillus spp. improve plant response to pathogen attack by triggering induced systemic resistance (ISR). Besides being the most promising biocontrol agents, Bacillus spp. promote plant growth via nitrogen fixation, phosphate solubilization, and phytohormone production. Antagonistic and plant growth-promoting strains of Bacillus spp. might be useful in formulating new preparations. Numerous studies of a wide range of plant species revealed a steady increase in the number of Bacillus spp. identified as potential biocontrol agents and plant growth promoters. Among different mechanisms of action, it remains unclear which individual or combined traits could be used as predictors in the selection of the best strains for crop productivity improvement. Due to numerous factors that influence the successful application of Bacillus spp., it is necessary to understand how different strains function in biological control and plant growth promotion, and distinctly define the factors that contribute to their more efficient use in the field.
This investigation was conducted in order to determine the degree of biochemical changes during accelerated and natural aging of sunflower seed. Five sunflower lines developed in Novi Sad, submitted to accelerated aging for three and five days, and natural aging of six and twelve months under conventional storage and controlled conditions, were used in these trials. Malondialdehyde, superoxide dismutase contents and peroxidase activities were studied. Lipid peroxidation and superoxide dismutase and peroxidase activities (especially pronounced in accelerated aging variant) were caused by both types of aging. The degree of seed damage and the ability of seed to resist the negative consequences of aging were influenced, beside duration of aging period, by type of storage and characteristics of sunflower lines.
Changes occurring in seed during aging are significant as far as seed quality and longevity are concerned and are a consequence of the effects of different storage conditions. The chemical composition of seed with high oil content is related to specific processes occurring in seed during storage. In this trial, sunflower and soybean genotypes developed in Novi Sad were submitted to accelerated aging for three and five days, and natural aging for six and twelve months, under controlled and conventional (non-controlled) conditions. The obtained results showed that preservation of seed viability depended on storage condition and duration, as well as plant species. Accelerated aging test can be used to predict the length of storage life of sunflower and soybean seed. In comparison to sunflower seed, soybean seed is more sensitive to damage and reduced germination during storage.
Seed aging and deterioration affect seed vigor and viability. The characteristics of the chemical composition of oil crops seed are related to specific processes occurring in the seed during storage. This study was performed to examine the changes in seed vigor of different sunflower and soybean genotypes under controlled and conventional (uncontrolled) conditions of natural aging for six and twelve months. Obtained results show that the degree of seed damage and the ability of seed to resist the negative effects of aging were influenced by duration and type of storage, as well as seed characteristics of the tested genotypes. The most valuable vigor test for both sunflower and soybean was cold test.
Soybean time of flowering and maturity are genetically controlled by E genes. Different allelic combinations of these genes determine soybean adaptation to a specific latitude. The paper describes the first attempt to assess adaptation of soybean genotypes developed and realized at Institute of Field and Vegetable Crops, Novi Sad, Serbia [Novi Sad (NS) varieties and breeding lines] based on E gene variation, as well as to comparatively assess E gene variation in North-American (NA), Chinese, and European genotypes, as most of the studies published so far deal with North-American and Chinese cultivars and breeding material. Allelic variation and distribution of the major maturity genes (E1, E2, E3, and E4) has been determined in 445 genotypes from soybean collections of NA ancestral lines, Chinese germplasm, and European varieties, as well as NS varieties and breeding lines. The study showed that allelic combinations of E1–E4 genes significantly determined the adaptation of varieties to different geographical regions, although they have different impacts on maturity. In general, each collection had one major E genotype haplogroup, comprising over 50% of the lines. The exceptions were European varieties that had two predominant haplogroups and NA ancestral lines distributed almost evenly among several haplogroups. As e1-as/e2/E3/E4 was the most common genotype in NS population, present in the best-performing genotypes in terms of yield, this specific allele combination was proposed as the optimal combination for the environments of Central-Eastern Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.