Nanoribbon chips, based on “silicon-on-insulator” structures (SOI-NR chips), have been fabricated. These SOI-NR chips, whose surface was sensitized with covalently immobilized oligonucleotide molecular probes (oDNA probes), have been employed for the nanoribbon biosensor-based detection of a circular ribonucleic acid (circRNA) molecular marker of glioma in humans. The nucleotide sequence of the oDNA probes was complimentary to the sequence of the target oDNA. The latter represents a synthetic analogue of a glioma marker—NFIX circular RNA. In this way, the detection of target oDNA molecules in a pure buffer has been performed. The lowest concentration of the target biomolecules, detectable in our experiments, was of the order of ~10−17 M. The SOI-NR sensor chips proposed herein have allowed us to reveal an elevated level of the NFIX circular RNA in the blood of a glioma patient.
The detection of CA 125 protein in buffer solution with a silicon-on-insulator (SOI)-based nanoribbon (NR) biosensor was experimentally demonstrated. In the biosensor, sensor chips, bearing an array of 12 nanoribbons (NRs) with n-type conductance, were employed. In the course of the analysis with the NR biosensor, the target protein was biospecifically captured onto the surface of the NRs, which was sensitized with covalently immobilized aptamers against CA 125. Atomic force microscopy (AFM) and mass spectrometry (MS) were employed in order to confirm the formation of the probe–target complexes on the NR surface. Via AFM and MS, the formation of aptamer–antigen complexes on the surface of SOI substrates with covalently immobilized aptamers against CA 125 was revealed, thus confirming the efficient immobilization of the aptamers onto the SOI surface. The biosensor signal, resulting from the biospecific interaction between CA 125 and the NR-immobilized aptamer probes, was shown to increase with an increase in the target protein concentration. The minimum detectable CA 125 concentration was as low as 1.5 × 10−17 M. Moreover, with the biosensor proposed herein, the detection of CA 125 in the plasma of ovarian cancer patients was demonstrated.
MicroRNAs (miRNAs), which represent short (20 to 22 nt) non-coding RNAs, were found to play a direct role in the development of autism in children. Herein, a highly sensitive “silicon-on-insulator”-based nanosensor (SOI-NS) has been developed for the revelation of autism-associated miRNAs. This SOI-NS comprises an array of nanowire sensor structures fabricated by complementary metal–oxide–semiconductor (CMOS)-compatible technology, gas-phase etching, and nanolithography. In our experiments described herein, we demonstrate the revelation of ASD-associated miRNAs in human plasma with the SOI-NS, whose sensor elements were sensitized with oligonucleotide probes. In order to determine the concentration sensitivity of the SOI-NS, experiments on the detection of synthetic DNA analogues of autism-associated miRNAs in purified buffer were performed. The lower limit of miRNA detection attained in our experiments amounted to 10−17 M.
Application of micro-Raman spectroscopy for the monitoring of quality of nanowire sensor chips fabrication has been demonstrated. Nanowire chips have been fabricated on the basis of «silicon-on-insulator» (SOI) structures (SOI-NW chips). The fabrication of SOI-NW chips was performed by optical litography with gas-phase etching. The so-fabricated SOI-NW chips are intended for highly sensitive detection of brain cancer biomarkers in humans. In our present study, two series of experiments have been conducted. In the first experimental series, detection of a synthetic DNA oligonucleotide (oDNA) analogue of brain cancer-associated microRNA miRNA-363 in purified buffer solution has been performed in order to demonstrate the high detection sensitivity. The second experimental series has been performed in order to reveal miRNA-363 itself in real human plasma samples. To provide detection biospecificity, the SOI-NW chip surface was modified by covalent immobilization of probe oligonucleotides (oDNA probes) complementary to the target biomolecules. Using the SOI-NW sensor chips proposed herein, the concentration detection limit of the target biomolecules at the level of 3.3 × 10−17 M has been demonstrated. Thus, the approach employing the SOI-NW chips proposed herein represents an attractive tool in biomedical practice, aimed at the early revelation of oncological diseases in humans.
Ovarian cancer is a gynecological cancer characterized by a high mortality rate and tumor heterogeneity. Its early detection and primary prophylaxis are difficult to perform. Detecting biomarkers for ovarian cancer plays a pivotal role in therapy effectiveness and affects patients’ survival. This study demonstrates the detection of microRNAs (miRNAs), which were reported to be associated with ovarian cancer tumorigenesis, with a nanowire biosensor based on silicon-on-insulator structures (SOI-NW biosensor). The advantages of the method proposed for miRNA detection using the SOI-NW biosensor are as follows: (1) no need for additional labeling or amplification reaction during sample preparation, and (2) real-time detection of target biomolecules. The detecting component of the biosensor is a chip with an array of 3 µm wide, 10 µm long silicon nanowires on its surface. The SOI-NW chip was fabricated using the “top-down” method, which is compatible with large-scale CMOS technology. Oligonucleotide probes (oDNA probes) carrying sequences complementary to the target miRNAs were covalently immobilized on the nanowire surface to ensure high-sensitivity biospecific sensing of the target biomolecules. The study involved two experimental series. Detection of model DNA oligonucleotides being synthetic analogs of the target miRNAs was carried out to assess the method’s sensitivity. The lowest concentration of the target oligonucleotides detectable in buffer solution was 1.1 × 10−16 M. In the second experimental series, detection of miRNAs (miRNA-21, miRNA-141, and miRNA-200a) isolated from blood plasma samples collected from patients having a verified diagnosis of ovarian cancer was performed. The results of our present study represent a step towards the development of novel highly sensitive diagnostic systems for the early revelation of ovarian cancer in women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.