The fungi Trichophyton mentagrophytes and T. interdigitale are closely related species, causing superficial infections in humans and other mammals. The status of these taxa is a field of long-lasting debates. To clarify their phylogenetic relationships within the genus Trichophyton and sharpen the species boundaries, we performed sequencing of four T. mentagrophytes genomes and also evaluated three previously published multilocus data sets. We performed computational species delimitation analysis on all available in GenBank internal transcribed spacer region (ITS) sequences of Trichophyton spp. Phylogenomic data, phylogenetic network, and species delimitation analyses implied that T. mentagrophytes and T. interdigitale belong to the same phylogenetic species. However, we argue that taxonomic status quo should be retained, from the perspective of epidemiological data and the principle of taxonomic stability. Since there is a correlation between ITS genotype and epidemiological source of an isolate, restriction of T. interdigitale to purely anthropophilic ITS genotypes seems to be reasonable.
ObjectiveA critical role in coronavirus disease 2019 (COVID-19) pathogenesis is played by immune dysregulation that leads to a generalized uncontrolled multisystem inflammatory response, caused by overproduction of proinflammatory cytokines, known as “a cytokine storm” (CS), strongly associated with a severe course of disease. The aim of this study is to identify prognostic biomarkers for CS development in COVID-19 patients and integrate them into a prognostic score for CS-associated risk applicable to routine clinical practice.Materials and MethodsThe authors performed a review of 458 medical records from COVID-19 patients (241 men and 217 women aged 60.0 ± 10.0) who received treatment in the St. Petersburg State Budgetary Institution of Healthcare City Hospital 40 (City Hospital 40, St. Petersburg), from Apr. 18, 2020 to Nov. 21, 2020. The patients were split in two groups: one group included 100 patients with moderate disease symptoms; the other group included 358 patients with progressive moderately severe, severe, and extremely severe disease. The National Early Warning Score (NEWS) score was used alongside with clinical assessment, chest computed tomographic (CT) scans, electrocardiography (ECG), and lab tests, like ferritin, C-reactive protein (CRP), interleukin (IL)-6, lactate dehydrogenase (LDH), and D-dimer.ResultsThe basic risk factors for cytokine storms in COVID-19 patients are male gender, age over 40 years, positive test result for replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, absolute lymphocyte count, dynamics in the NEWS score, as well as LDH, D-dimer, ferritin, and IL-6 levels. These clinical and instrumental findings can be also used as laboratory biomarkers for diagnosis and dynamic monitoring of cytokine storms. The suggested prognostic scale (including the NEWS score dynamics; serum IL-6 greater than 23 pg/ml; serum CRP 50 mg/L or greater; absolute lymphocyte count less than 0.72 × 109/L; positive test result for replicative coronavirus (SARS-CoV-2) RNA; age 40 years and over) is a useful tool to identify patients at a high risk for cytokine storm, requiring an early onset of anti-inflammatory therapy.
Here we report a pilot-sized study to compare the taxonomic composition of sputum microbiome in 17 newly-diagnosed lung cancer (LC) patients and 17 controls. Another object was to compare the representation of individual bacterial genera and species in sputum with the frequency of chromosomal aberrations in the blood lymphocytes of LC patients and in controls. Both groups were male; average age 56.1 ± 11.5 in patients and 55.7 ± 4.1 in controls. Differences in the species composition of bacterial communities in LC patients and controls were significant (pseudo-F = 1.94; p = 0.005). Increased prevalence in LC patients was detected for the genera Haemophilus and Bergeyella; whereas a decrease was observed for the genera Atopobium, Stomatobaculum, Treponema and Porphyromonas. Donors with high frequencies of chromosomal aberrations had a significant reduction in the microbiome of representatives of the genus Atopobium in the microbiome and a simultaneous increase in representatives of the species Alloprevotella compared to donors with a low level of chromosomal aberrations in lymphocytes. Thus, a comparison of the bacterial composition in the sputum of donors with cytogenetic damages in theirs lymphocytes, warrants further investigations on the potential role of microorganisms in the process of mutagenesis in somatic cells of the host body.
Classical inbred mouse strains have historically been instrumental in mapping immunological traits. However, most of the classical strains originate from a relatively limited number of founder animals, largely within the Mus musculus domesticus subspecies. Therefore, their genetic diversity is ultimately limited. For this reason, it is not feasible to use these mice for exhaustive interrogation of immune signaling pathways. In order to investigate networks through forward genetic analysis, larger genetic diversity is required than is introduced under laboratory conditions. Recently, inbred strains from other mouse subspecies were established such as Mus musculus castaneus and Mus musculus musculus, which diverged from a shared common ancestor with Mus musculus domesticus more than one million years ago. A direct genomic comparison clearly demonstrates the evolutionary divergence that has occurred between wild-derived mice and the classical inbred strains. When compared to classical inbred strains, wild-derived mice exhibit polymorphisms every 100-200 base pairs. Studying the molecular basis of these traits provides us with insight into how the immune system can evolve regulatory features to accommodate environment-specific constraints. Because most wild-derived strains are able to breed with classical inbred mice, they represent a rich source of evolutionarily significant diversity for forward genetic studies. These organisms are an emerging, though still largely unexplored, model for the identification and study of novel immunological genes.
Candida auris is an emergent yeast pathogen, easily transmissible between patients and with high percent of multidrug resistant strains. Here we present a draft genome sequence of the first known Russian strain of C. auris, isolated from a case of candidemia. The strain clustered within South Asian C. auris clade and seemingly represented an independent event of dissemination from the original species range. Observed fluconazole resistance was probably due to F105L and K143R mutations in ERG11.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.