HighlightsBiologically active rhBMP-4 was produced in a prokaryotic host as inclusion bodies.Different refolding recipes were tested for optimal dimerization yield.One-step purification of dimer with cation-exchange membrane chromatography.The product induces trophoblast differentiation in induced pluripotent stem cells.Comparison between commercial rhBMP-4 from cell culture and product from E. coli.
Caudal-type homeobox 2 (CDX2) transcription factor is an important marker for early trophoblast lineages and intestinal epithelium. Due to its nuclear expression the immunostaining and sorting of viable CDX2 cells is not possible. In this paper we report the generation and describe key characteristics of a CDX2 knock-in reporter hiPSC-cell line (MHHi007-A-1) which can serve as an in vitro tool to study human trophoblast and intestinal differentiation.
Abnormalities at any stage of trophoblast development may result in pregnancy-related complications. Many of these adverse outcomes are discovered later in pregnancy, but the underlying pathomechanisms are constituted during the first trimester. Acquiring developmentally relevant material to elucidate the disease mechanisms is difficult. Human pluripotent stem cell (hPSC) technology can provide a renewable source of relevant cells. BMP4, A83-01, and PD173074 (BAP) treatment drives trophoblast commitment of hPSCs toward syncytiotrophoblast (STB), but lacks extravillous trophoblast (EVT) cells. EVTs mediate key functions during placentation, remodeling of uterine spiral arteries, and maintenance of immunological tolerance. We optimized the protocol for a more efficient generation of HLA-Gpos EVT-like trophoblasts from primed hiPSCs. Increasing the concentrations of A83-01 and PD173074, while decreasing bulk cell density resulted in an increase in HLA-G of up to 71%. Gene expression profiling supports the advancements of our treatment regarding the generation of trophoblast cells. The reported differentiation protocol will allow for an on-demand access to human trophoblast cells enriched for HLA-Gpos EVT-like cells, allowing for the elucidation of placenta-related disorders and investigating the immunological tolerance toward the fetus, overcoming the difficulties in obtaining primary EVTs without the need for a complex differentiation pathway via naïve pluripotent or trophoblast stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.