The influence of growth parameters on the production of pediocin AcH by Pediococcus acidilactici H was studied. This strain produced large quantities of pediocin AcH in TGE broth (Trypticase [1%], glucose [1%], yeast extract [1%], Tween 80 [0.2%], Mn2+ [0.033 mM], Mg2+ [0.02 mM] [pH 6.5]) within 16 to 18 h at 30 to 37°C (final pH, 3.6 to 3.7). Pediocin AcH production was negligible when the pH of the medium was maintained at 5.0 or above, even in the presence of high cell mass.
Metal-organic frameworks (MOFs) are commended as photocatalysts for H2 evolution and CO2 reduction as they combine light-harvesting and catalytic functions with excellent reactant adsorption capabilities. For dynamic processes in liquid phase, the accessibility of active sites becomes a critical parameter as reactant diffusion is limited by the inherently small micropores. Our strategy is to introduce additional mesopores by selectively removing one ligand in mixed-ligand MOFs via thermolysis. Here we report photoactive MOFs of the MIL-125-Ti family with two distinct mesopore architectures resembling either large cavities or branching fractures. The ligand removal is highly selective and follows a 2-step process tunable by temperature and time. The introduction of mesopores and the associated formation of new active sites have improved the HER rates of the MOFs by up to 500%. We envision that this strategy will allow the purposeful engineering of hierarchical MOFs and advance their applicability in environmental and energy technologies.
The
electronic structure and optical properties of fused S,N-heteroacenes
(SNn, SN5–SN10) have been studied theoretically.
The calculations reveal that, bond length alteration approaches zero
with increasing number of heterocyclic rings in the conjugated molecules.
As a general trend of optical property, the absorption maximum is
red-shifted with increasing conjugation length, achieved through increasing
the degree of polymerization or by incorporating strong electron withdrawing
groups at the two ends of the molecules. However, an even–odd
relationship is observed during electronic excitation followed by
exciton dissociation. Thus, SN5 and SN9 experience better charge separation
than SN6 and SN10, respectively. The theoretical results interpret
the experimental finding where SN5 is reported to offer better photocurrent
efficiency. To compare the photovoltaic performances of the materials,
we compute the rate of charge recombination and charge transfer for
the composites consisting of some SNn and a well
reputed acceptor PC61BM.
Visceral leishmaniasis (VL) is the second-largest parasitic killer disease after malaria. During VL, the protozoan Leishmania donovani induces prostaglandin E2 (PGE2) generation within host macrophages to aid parasite survival. PGE2 significantly influences leishmanial pathogenesis, as L. donovani proliferation is known to be attenuated in PGE2-inhibited macrophages. Here, we report for the first time that signaling via macrophage Toll-like receptor 2 (TLR2) plays an instrumental role in inducing PGE2 release from L. donovani-infected macrophages. This signaling cascade, mediated via the TLR2-phosphatidylinositol 3-kinase (PI3K)-phospholipase C (PLC) signaling pathway, was found to be indispensable for activation of two major enzymes required for PGE2 generation: cytosolic phospholipase A2 (cPLA2) and cyclooxygenase 2 (Cox2). Inhibition of cPLA2, but not secreted phospholipase A2 (sPLA2) or calcium-independent phospholipase A2 (iPLA2), arrested L. donovani infection. During infection, cPLA2 activity increased >7-fold in a calcium-dependent and extracellular signal-regulated kinase (ERK)-dependent manner, indicating that elevation of intracellular calcium and ERK-mediated phosphorylation was necessary for L. donovaniinduced cPLA2 activation. For transcriptional upregulation of cyclooxygenase 2, activation of the calcium-calcineurin-nuclear factor of activated T cells (NFAT) signaling was required in addition to the TLR2-PI3K-PLC pathway. Detailed studies by sitedirected mutagenesis of potential NFAT binding sites and chromatin immunoprecipitation (ChIP) analysis revealed that the binding of macrophage NFATc2, at the ؊73/؊77 site on the cox2 promoter, induced L. donovani-driven cox2 transcriptional activation. Collectively, these findings highlight the contribution of TLR2 downstream signaling toward activation of cPLA2 and Cox2 and illustrate how the TLR2-PI3K-PLC pathway acts in a concerted manner with calcium-calcineurin-NFATc2 signaling to modulate PGE2 release from L. donovani-infected macrophages.
Nisin, a food-grade antimicrobial peptide produced by lactic acid bacteria has been examined for its probable interaction with the human ACE2 (hACE2) receptor, the site where spike protein of SARS-CoV-2 binds. Among the eight nisin variants examined, nisin H, nisin Z, nisin U and nisin A showed a significant binding affinity towards hACE2, higher than that of the RBD (receptor binding domain) of the SARS-CoV-2 spike protein. The molecular interaction of nisin with hACE2 was investigated by homology modeling and docking studies. Further, binding efficiency of the most potent nisin H was evaluated through the interaction of hACE2:nisin H complex with RBD (receptor-binding domain) of SARS-CoV-2 and that of hACE2:RBD complex with nisin H. Here, nisin H acted as a potential competitor of RBD to access the hACE2 receptor. The study unravels for the first time that a globally used food preservative, nisin has the potential to bind to hACE2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.