1 Inflammmatory bowel disease (IBD) is characterized by oxidative and nitrosative stress, leucocyte infiltration and upregulation of proinflammatory cytokines. In this study, we have investigated the protective effects of curcumin, an anti-inflammatory and antioxidant food derivative, on 2,4,6-trinitrobenzene sulphonic acid-induced colitis in mice, a model for IBD. 2 Intestinal lesions (judged by macroscopic and histological score) were associated with neutrophil infiltration (measured as increase in myeloperoxidase activity in the mucosa), increased serine protease activity (may be involved in the degradation of colonic tissue) and high levels of malondialdehyde (an indicator of lipid peroxidation). 3 Dose -response studies revealed that pretreatment of mice with curcumin (50 mg kg À1 daily i.g. for 10 days) significantly ameliorated the appearance of diarrhoea and the disruption of colonic architecture. Higher doses (100 and 300 mg kg À1 ) had comparable effects. 4 In curcumin-pretreated mice, there was a significant reduction in the degree of both neutrophil infiltration (measured as decrease in myeloperoxidase activity) and lipid peroxidation (measured as decrease in malondialdehyde activity) in the inflamed colon as well as decreased serine protease activity. 5 Curcumin also reduced the levels of nitric oxide (NO) and O 2 À associated with the favourable expression of Th1 and Th2 cytokines and inducible NO synthase. Consistent with these observations, nuclear factor-kB activation in colonic mucosa was suppressed in the curcumin-treated mice. 6 These findings suggest that curcumin or diferuloylmethane, a major component of the food flavour turmeric, exerts beneficial effects in experimental colitis and may, therefore, be useful in the treatment of IBD.
Background and purpose: Inflammatory bowel disease (IBD) is associated with activation of nuclear factor kappa B (NF-kB) involved in regulating the expression of inducible nitric oxide synthase (iNOS) and proinflammatory cytokine genes. As theaflavin-3,3 0 -digallate (TFDG), the most potent anti-oxidant polyphenol of black tea, down-regulates NF-kB activation, we investigated if TFDG is beneficial in colonic inflammation by suppressing iNOS and proinflammatory cytokines. Experimental approach: The in vivo efficacy of TFDG was assessed in mice with trinitrobenzene sulfonic acid (TNBS)-induced colitis. Both mRNA and protein levels of proinflammatory cytokines and iNOS were analyzed in colon tissue treated with or without TFDG. NF-kB activation was determined by electrophoretic mobility shift assay and levels of NF-kB inhibitory protein (IkBa) were analyzed by Western blotting. Key results: Oral administration of TFDG (5 mg kg À1 daily i.g.) significantly improved TNBS-induced colitis associated with decreased mRNA and protein levels of TNF-a, IL-12, IFN-g and iNOS in colonic mucosa. DNA binding and Western blotting revealed increase in NF-kB activation and IkBa depletion in TNBS-treated mice from Day 2 through Day 8 with a maximum at Day 4, which resulted from increased phosphorylation of IkBa and higher activity of IkB kinase (IKK). Pretreatment with TFDG markedly inhibited TNBS-induced increases in nuclear localization of NF-kB, cytosolic IKK activity and preserved IkBa in colon tissue. Conclusions and Implications: TFDG exerts protective effects in experimental colitis and inhibits production of inflammatory mediators through a mechanism that, at least in part, involves inhibition of NF-kB activation.
We investigated the role of phospholipase A2 (PLA2) and phospholipase C (PLC) in myocardial phosholipid degradation and cellular injury during reperfusion of ischemic myocardium. For this purpose, isolated rat hearts were perfused with isotopic arachidonic acid to label its membrane phospholipids. Hearts preperfused with antiphospholipase A2 (anti-PLA2) retained a significantly higher amount of radiolabel in phosphatidylcholine and phosphatidylinositol and a corresponding lower amount of radiolabel in lysophosphatidylcholine and nonesterified fatty acids (P less than 0.05) after 30 min of reperfusion following 30 min of normothermic global ischemia compared with hearts preperfused with nonimmune immunoglobulin G. In similar experiments, antiphospholipase C (anti-PLC)-treated hearts were associated with significantly (P less than 0.05) higher radiolabel in all phospholipids and lower radiolabel in diacyglycerol compared with nonimmune immunoglobulin G-treated hearts. Measurement of phospholipase activity in subcellular organelles of these hearts showed decreased PLA2 activity in cytosol, mitochondria, and microsomes of anti-PLA2-treated hearts and decreased PLC activity of microsomes in anti-PLC-treated hearts. Furthermore, both the antiphospholipases attenuated the release of creatine kinase and lactate dehydrogenase into perfusate and increased contractility as well as coronary flow in the reperfused hearts. Results of this study suggest that both PLA2 and PLC are involved in the degradation of phospholipids and cellular injury that occur during reperfusion of ischemic myocardium.
The role of a hot water extract of black tea (Camellia sinensis (L). O. Kuntze Theaceae) in the gastric cytoprotective mechanisms was studied using gastric mucosal lesions produced by various ulcerogens in rats as an experimental model. Prior oral administration of black tea extract (BTE) at 20 ml/kg, i.g. once a day for 7 days significantly reduced the incidence of gastric erosions and severity induced by ethanol, diethyldithiocarbamate (DDC) and diethylmaleate (DEM). This treatment also favorably altered the changes in acid and peptic activity of gastric juice in these ulcerogen-treated animals. Singular administration of succimer (60 mg/kg, i.g.), the standard sulfhydryl containing antiulcer drug used as a reference drug, was also effective. The levels of glutathione and glutathione peroxidase were significantly decreased after treatment with ethanol, DDC and DEM, and this decrease was prevented by BTE pretreatment in the aforesaid manner. Other major features of BTE-induced reversal of ulcerogenic agents include a significant decrease in the protein content and a marked increase in hexosamine and sialic acid content. These results suggest a major role for glutathione, an endogenous antioxidant, in the cytoprotection against ulceration afforded by BTE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.