Recent years have encountered massive growth in malwares which poses a severe threat to modern computers and internet security. Existing malware detection systems are confronting with unknown malware variants. Recently developed malware detection systems investigated that the diverse forms of malware exhibit similar patterns in their structure with minor variations. Hence, it is required to discriminate the types of features extracted for detecting malwares. So that potential of malware detection system can be leveraged to combat with unfamiliar malwares. We mainly focus on the categorization of features based on malware analysis. This paper highlights general framework of malware detection system and pinpoints strengths and weaknesses of each method. Finally we presented overview of performance of present malware detection systems based on features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.