In this study, we used larval Euphlyctis cyanophlyctis to determine the predator recognition mechanism. We conducted a series of experiments to determine if larval E. cyanophlyctis have the innate ability to recognise predatory odour (kairomones) as a threat or if they learn to do so during ontogeny. In the case of learning, we wanted to determine the developmental window during which learning is accomplished. Further, we tested the antipredator response of predator- naive as well as predator-experienced tadpoles to chemical cues of different origins in order to assess if they exhibit differential responses. Our results clearly indicate that predator-naı¨ve tadpoles of E. cyanophlyctis do not reduce their activity against predatory cues of dragonfly nymphs, suggesting that they lack the innate ability to recognise kairomones. However, they could learn to do so when trained to perceive kairomones simultaneously along with alarm cues. Surprisingly, larval E. cyanophlyctis could learn to recognise kairomones through association during embryonic stages even before the development of a nervous system. Although larval E. cyanophlyctis lack the innate ability to recognise kairomones, they were able to recognise conspecific alarm cues on the first encounter, indicating that they have the innate ability to recognise alarm cues as a potential threat.
Predation risk varies on a moment-to-moment basis, through day and night, lunar and seasonal cycles, and over evolutionary time. Hence, it is adaptive for prey animals to exhibit environment-specific behaviour, morphology, and (or) life-history traits. Herein, the effects of temporally varying predation risk on growth, behaviour, morphology, and life-history traits of larval Indian Skipper Frogs (Euphlyctis cyanophlyctis (Schneider, 1799)) were studied by exposing them to no risk, continuous, predictable, and unpredictable risks at different time points. Our results show that larval E. cyanophlyctis could learn the temporal pattern of risk leading to weaker behavioural responses under predictable risk and stronger responses to unpredictable risk. Temporally varying predation risk had a significant impact on tadpole morphology. Tadpoles facing continuous risk had narrow tail muscles. Tadpoles facing predictable risk during the day were heavy with wide and deep tail muscles, whereas those facing predictable risk at night had long tails. Tadpoles facing unpredictable risk were heavy with narrow tail muscles. Metamorphic traits of E. cyanophlyctis were also affected by the temporal variation in predation risk. Tadpoles facing predictable risk during the day emerged at the largest size. However, tadpoles facing predictable risk at night and unpredictable risk metamorphosed earlier, whereas those facing continuous risk metamorphosed later.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.