In recent years, there has been growing enthusiasm that functional magnetic resonance imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to (1) examine the impact of emerging techniques for controlling for “micro-movements,” and (2) provide novel insights into the neural correlates of ADHD subtypes. Using support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping (particularly sensorimotor systems), but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that resting-state functional connectivity MRI (rs-fcMRI) data can be used to characterize individual patients with ADHD and to identify neural distinctions underlying the clinical heterogeneity of ADHD.
IMPORTANCE Psychiatric nosology is limited by behavioral and biological heterogeneity within existing disorder categories. The imprecise nature of current nosologic distinctions limits both mechanistic understanding and clinical prediction. We demonstrate an approach consistent with the National Institute of Mental Health Research Domain Criteria initiative to identify superior, neurobiologically valid subgroups with better predictive capacity than existing psychiatric categories for childhood attention-deficit/hyperactivity disorder (ADHD).OBJECTIVE To refine subtyping of childhood ADHD by using biologically based behavioral dimensions (ie, temperament), novel classification algorithms, and multiple external validators. DESIGN, SETTING, AND PARTICIPANTSA total of 437 clinically well-characterized, community-recruited children, with and without ADHD, participated in an ongoing longitudinal study. Baseline data were used to classify children into subgroups based on temperament dimensions and examine external validators including physiological and magnetic resonance imaging measures. One-year longitudinal follow-up data are reported for a subgroup of the ADHD sample to address stability and clinical prediction. MAIN OUTCOMES AND MEASURESParent/guardian ratings of children on a measure of temperament were used as input features in novel community detection analyses to identify subgroups within the sample. Groups were validated using 3 widely accepted external validators: peripheral physiological characteristics (cardiac measures of respiratory sinus arrhythmia and pre-ejection period), central nervous system functioning (via resting-state functional connectivity magnetic resonance imaging), and clinical outcomes (at 1-year longitudinal follow-up). RESULTSThe community detection algorithm suggested 3 novel types of ADHD, labeled as mild (normative emotion regulation), surgent (extreme levels of positive approachmotivation), and irritable (extreme levels of negative emotionality, anger, and poor soothability). Types were independent of existing clinical demarcations including DSM-5 presentations or symptom severity. These types showed stability over time and were distinguished by unique patterns of cardiac physiological response, resting-state functional brain connectivity, and clinical outcomes 1 year later. CONCLUSIONS AND RELEVANCEResults suggest that a biologically informed temperament-based typology, developed with a discovery-based community detection algorithm, provides a superior description of heterogeneity in the ADHD population than does any current clinical nosologic criteria. This demonstration sets the stage for more aggressive attempts at a tractable, biologically based nosology.
Recent studies using Magnetic Resonance Imaging (MRI) have proposed that the brain’s white matter is organized as a rich club, whereby the most highly connected regions of the brain are also highly connected to each other. Here we use both functional and diffusion-weighted MRI in the human brain to investigate whether the rich club phenomena is present with functional connectivity, and how this organization relates to the structural phenomena. We also examine whether rich club regions serve to integrate information between distinct brain systems, and conclude with a brief investigation of the developmental trajectory of rich-club phenomena. In agreement with prior work, both adults and children showed robust structural rich club organization, comprising regions of the superior medial frontal/dACC, medial parietal/PCC, insula, and inferior temporal cortex. We also show that these regions were highly integrated across the brain’s major networks. Functional brain networks were found to have rich club phenomena in a similar spatial layout, but a high level of segregation between systems. While no significant differences between adults and children were found structurally, adults showed significantly greater functional rich club organization. This difference appeared to be driven by a specific set of connections between superior parietal, insula, and supramarginal cortex. In sum, this work highlights the existence of both a structural and functional rich club in adult and child populations with some functional changes over development. It also offers a potential target in examining atypical network organization in common developmental brain disorders, such as ADHD and Autism.
Clinical investigations of many neuropsychiatric disorders rely on the assumption that diagnostic categories and typical control samples each have within-group homogeneity. However, research using human neuroimaging has revealed that much heterogeneity exists across individuals in both clinical and control samples. This reality necessitates that researchers identify and organize the potentially varied patterns of brain physiology. We introduce an analytical approach for arriving at subgroups of individuals based entirely on their brain physiology. The method begins with Group Iterative Multiple Model Estimation (GIMME) to assess individual directed functional connectivity maps. GIMME is one of the only methods to date that can recover both the direction and presence of directed functional connectivity maps in heterogeneous data, making it an ideal place to start since it addresses the problem of heterogeneity. Individuals are then grouped based on similarities in their connectivity patterns using a modularity approach for community detection. Monte Carlo simulations demonstrate that using GIMME in combination with the modularity algorithm works exceptionally well - on average over 97% of simulated individuals are placed in the accurate subgroup with no prior information on functional architecture or group identity. Having demonstrated reliability, we examine resting-state data of fronto-parietal regions drawn from a sample (N = 80) of typically developing and attention-deficit/hyperactivity disorder (ADHD) -diagnosed children. Here, we find 5 subgroups. Two subgroups were predominantly comprised of ADHD, suggesting that more than one biological marker exists that can be used to identify children with ADHD based from their brain physiology. Empirical evidence presented here supports notions that heterogeneity exists in brain physiology within ADHD and control samples. This type of information gained from the approach presented here can assist in better characterizing patients in terms of outcomes, optimal treatment strategies, potential gene-environment interactions, and the use of biological phenomenon to assist with mental health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.