Subependymomas are extremely rare lesions of the spinal cord. Only 33 cases including ours have been reported in the cervical cord. These are typically benign slow growing tumors occurring eccentrically within the cord, producing minimal neurological deficits. The clinical, radiological, and histopathological aspects of this unusual lesion have been reviewed in detail. As the histogenesis of this tumor is much debated, we propose an alternate origin for the same.
Thermal energy storage for concentrating solar thermal power (CSP) plants can help in overcoming the intermittency of the solar resource and also reduce the levelized cost of energy (LCOE) by utilizing the power block for extended periods of time. In general, heat can be stored in the form of sensible heat, latent heat, and thermochemical reactions. This article describes the development of a costeffective latent heat storage TES at the University of South Florida (USF). Latent heat storage systems have higher energy density compared to sensible heat storage systems. However, most phase change materials (PCMs) have low thermal conductivity that leads to slow charging and discharging rates. The effective thermal conductivity of PCMs can be improved by forming small macrocapsules of PCM and enhancing convective heat transfer by submerging them in a liquid. A novel encapsulation procedure for high-temperature PCMs that can be used for thermal energy storage (TES) systems in CSP plants is being developed at USF. When incorporated in a TES system, these PCMs can reduce the system costs to much lower rates than currently used systems. Economical encapsulation is achieved by using a novel electroless deposition technique. Preliminary results are presented and the factors that are being considered for process optimization are discussed.
Storage systems based on latent heat storage have high-energy storage density, which reduces the footprint of the system and the cost. However, phase change materials (PCMs) have very low thermal conductivities making them unsuitable for large-scale use without enhancing the effective thermal conductivity. In order to address the low thermal conductivity of the PCMs, macroencapsulation of PCMs is adopted as an effective technique. The macro encapsulation not only provides a self-supporting structure but also enhances the heat transfer rate. In this research, Sodium nitrate (NaNO3), a low cost PCM, was selected for thermal storage in a temperature range of 300–500°C. The PCM was encapsulated in a metal oxide cell using self-assembly reactions, hydrolysis, and simultaneous chemical oxidation at various temperatures. The metal oxide encapsulated PCM capsule was characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The cyclic stability and thermal performance of the capsules were also studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.