This study determined the relative efficacy of an experimental explicit emergent literacy intervention program for preschoolers experiencing multiple risk factors. Using an alternating treatment research design, children completed two 6-week waves of intervention in small groups; one wave featured the experimental explicit intervention program, whereas the other featured a comparison program. Emergent literacy assessment was conducted at pretest and at the end of each wave. Results indicated significant widespread gains in emergent literacy knowledge over the entire 12-week intervention program; growth was significantly greater during the experimental explicit intervention program compared to the comparison program. An examination of individual differences and intervention outcome showed oral language skills and literacy orientation to predict emergent literacy performance at the end of the program.
Automated facial measurement using computer vision has the potential to objectively document continuous changes in behavior. To examine emotional expression and communication, we used automated measurements to quantify smile strength, eye constriction, and mouth opening in two six-month-old/mother dyads who each engaged in a face-to-face interaction. Automated measurements showed high associations with anatomically based manual coding (concurrent validity); measurements of smiling showed high associations with mean ratings of positive emotion made by naive observers (construct validity). For both infants and mothers, smile strength and eye constriction (the Duchenne marker) were correlated over time, creating a continuous index of smile intensity. Infant and mother smile activity exhibited changing (nonstationary) local patterns of association, suggesting the dyadic repair and dissolution of states of affective synchrony. The study provides insights into the potential and limitations of automated measurement of facial action.
Summary
There has been great interest in developing nonlinear structural equation models and associated statistical inference procedures, including estimation and model selection methods. In this paper a general semiparametric structural equation model (SSEM) is developed in which the structural equation is composed of nonparametric functions of exogenous latent variables and fixed covariates on a set of latent endogenous variables. A basis representation is used to approximate these nonparametric functions in the structural equation and the Bayesian Lasso method coupled with a Markov Chain Monte Carlo (MCMC) algorithm is used for simultaneous estimation and model selection. The proposed method is illustrated using a simulation study and data from the Affective Dynamics and Individual Differences (ADID) study. Results demonstrate that our method can accurately estimate the unknown parameters and correctly identify the true underlying model.
Factor analysis is a popular statistical technique for multivariate data analysis. Developments in the structural equation modeling framework have enabled the use of hybrid confirmatory/exploratory approaches in which factor loading structures can be explored relatively flexibly within a confirmatory factor analysis (CFA) framework. Recently, a Bayesian structural equation modeling (BSEM) approach (Muthén & Asparouhov, 2012) has been proposed as a way to explore the presence of cross-loadings in CFA models. We show that the issue of determining factor loading patterns may be formulated as a Bayesian variable selection problem in which Muthén and Asparouhov’s approach can be regarded as a BSEM approach with ridge regression prior (BSEM-RP). We propose another Bayesian approach, denoted herein as the Bayesian structural equation modeling with spike and slab prior (BSEM-SSP), which serves as a one-stage alternative to the BSEM-RP. We review the theoretical advantages and disadvantages of both approaches and compare their empirical performance relative to two modification indices-based approaches and exploratory factor analysis with target rotation. A teacher stress scale data set (Byrne, 2012; Pettegrew & Wolf, 1982) is used to demonstrate our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.