This study relates to the mathematical modelling of enzymatic production of Cyclodextrins (CDs) by Cyclodextrin Glucanotransferase (CGTase) from Bacillus macerans. The experiments were carried out in batch mode using different starch sources and the results were used to estimate unknown parameters using linearization and dynamic simulation methods. α- and β-CD produced from tapioca were found to give the highest Michaelis-Menten constant, KM,i of 58.23 and 54.07 g L-1, respectively and maximum velocity, Vmax,i of 3.45 and 2.76 g L-1.min, respectively, while sago resulted in the highest KM,i and Vmax,i values of 342.35 g L-1 and 5.97 g L-1.min, respectively, for γ-CD obtained by the linearization method. Value of product inhibition, K1,i and CD degradation coefficient rate, δCD,i, were estimated using dynamic simulation, indicating that exponential reaction kinetics could be fitted better with the experimental data. Sensitivity analysis revealed that the product inhibition parameter in the exponential reaction kinetic equation is more significant in the process. For validation, the production of CDs by fed batch method was undertaken and starch and enzyme were added into the reaction medium. Then, the predicted profiles generated by simulation were compared with the experimental values. The proposed exponential reaction kinetics shows good fitting with the experimental data
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.