Long-term performance of pavement structures is significantly impacted by the stability of the underlying soils. In situ subgrades often do not provide the support required to achieve acceptable performance under traffic loading and environmental demands. Although stabilization is an effective alternative for improving soil properties, the engineering properties derived from stabilization vary widely due to heterogeneity in soil composition, differences in micro and macro structure among soils, heterogeneity of geologic deposits, and due to differences in physical and chemical interactions between the soil and candidate stabilizers. These variations necessitate the consideration of site-specific treatment options which must be validated through testing of soil-stabilizer mixtures. This report addresses soil treatment with the traditional calcium-based stabilizers: Portland cement, lime, and fly ash. The report describes and compares the basic reactions that occur between these stabilizers and soil and the mechanisms that result in stabilization. The report presents a straightforward methodology to determine which stabilizers should be considered as candidates for stabilization for a specific soil, pavement, and environment. The report then presents a protocol for each stabilizer through which the selection of the stabilizer is validated based on mixture testing and mixture design. The mixture design process defines an acceptable amount of stabilizer for the soil in question based on consistency testing, strength testing, and in some cases (resilient) modulus testing. Within each additive validation and mixture design protocol, an assessment of the potential for deleterious soiladditive reactions is made.
Damage in sulfate-bearing soils and aggregate systems stabilized with additives containing lime, including lime and portland cement, has drawn considerable attention over the past two decades. Researchers and practitioners have made considerable contributions to the understanding of the problem, including the mechanisms involved in the formation of the two minerals, ettringite and thaumasite, that are most often associated with this damage. This paper provides a case history analysis of the expansion history compared with the ettringite growth history of three controlled low-strength mixtures containing fly ash with relatively high sulfate contents. Samples were subjected to three curing conditions: a dry cure, in which only mixing water was available for curing; a moist cure, in which an external source of water was available for curing; and a sulfate cure, in which an external source of sulfate-bearing water was made available for the duration of cure. Ettringite was quantified by using both differential scanning calorimetry and X-ray diffraction; the resulting volume changes in the samples were measured. Results suggested that sorption of water by the ettringite molecule was at least part of the reason for expansion. The importance of sorption was based on the fact that although expansion increased in moist cure compared to dry cure systems, the quantities of ettringite formed under each regime were about the same and remained about the same throughout the experiments. As expected, samples exposed to sulfate cure responded with the greatest expansion, which was concomitant with continued ettringite crystal growth due to a supply of the limiting reagent, sulfate.
Field observations suggest that ettringite-induced swell in lime-treated soils may manifest rapidly after placement and compaction or after months or even years after lime treatment. In either case, forensic investigations have identified the presence of the mineral ettringite in distressed sections. However, the time window between the observation of distress and the subsequent forensic evaluations has left room for doubt as to whether the ettringite caused the observed distress or was formed between the time of the observed distress and the time of the forensic investigation. The study focuses on identifying alternative, probable mechanisms of swelling when sulfate-laden soils are stabilized with lime. The research addresses the hypothesis that swelling in sulfate-bearing fine-grained soils results from one or a combination of three mechanisms: (a) volumetric expansion during ettringite formation, (b) water movement triggered by a high osmotic suction caused by sulfate salts, and (c) the ability of the ettringite mineral to absorb water and contribute to the swelling process. The data validate the conclusion that a synergy of the mechanisms discussed contributes to swelling distress. The study also addresses the impact of matrix strength of the stabilized soil on damage potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.