We have examined the biological activity of 12 platinum(II)-based DNA intercalators of the type [Pt(I(L))(A(L))](2+), where I(L) is an intercalating ligand (1,10-phenanthroline or a methylated derivative) and A(L) is an ancillary ligand (diaminocyclohexane, diphenylethylenediamine or 1,2-bis(4-fluorophenyl)-1,2-ethylenediamine). The chiral compounds (1-9) and the racemic compounds (10-12) were tested against a panel of human cancer cell lines, with a number of complexes displaying activity significantly greater than that of cisplatin (up to 100-fold increase in activity in the A-427 cell line). The activity of the complexes containing diphenylethylenediamine (8 and 9) and 1,2-bis(4-fluorophenyl)-1,2-ethylenediamine (10-12) was significantly lower compared to the complexes containing diaminocyclohexane (1-7). Further in vitro testing, such as DNA unwinding, competition assays, and DNase 1 footprinting, was conducted on the most active compound (5) and its enantiomer (6) to provide information about the mechanism of action. These complexes display activity in cisplatin resistant cell lines, have higher cellular uptake than cisplatin, and do not activate caspase-3 as cisplatin does, indicating that these complexes exhibit a different mechanism of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.