Background: A major determinant of the risk of myocardial infarction is the stability of the atherosclerotic plaque. Macrophage-rich plaques are more vulnerable to rupture, since macrophages excrete an excess of matrix-degrading enzymes over their inhibitors, reducing collagen content and thinning the fibrous cap. Several genetic studies have shown that disruption of signalling by the chemokine monocyte chemoattractant protein 1 reduced the lipid lesion area and macrophage accumulation in the vessel wall. Methods: We have tested whether a similar reduction in macrophage accumulation could be achieved pharmacologically by treating apolipoprotein-E-deficient mice with the chemokine inhibitor NR58-3.14.3. Results: Mice treated for various periods of time (from several days to 6 months) with NR58-3.14.3 (approximately 30 mg/kg/day) consistently had 30–40% fewer macrophages in vascular lesions, compared with mice treated with the inactive control NR58-3.14.4 or PBS vehicle. Similarly, cleaved collagen staining was lower in mice treated for up to 7 days, although this effect was not maintained when treatment time was extended to 12 weeks. The vascular lipid lesion area was unaffected by treatment, but total collagen I staining and smooth muscle cell number were both increased, suggesting that a shift to a more stable plaque phenotype had been achieved. Conclusions: Strategies, such as chemokine inhibition, to attenuate macrophage accumulation may therefore be useful to promote stabilization of atherosclerotic plaques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.