The role of the immune system is to recognize pathogens, tumor cells or dead cells and to react with a very specific and localized response. By taking advantage of a highly sophisticated system of chemokines and chemokine receptors, leukocytes such as neutrophils, macrophages, and Tlymphocytes are targeted to the precise location of inflammation. While this is a beneficial process for acute infection and inflammation, recruitment of immune cells to sites of chronic inflammation can be detrimental. It is becoming clear that these inflammatory cells play a significant role in the initiation and progression of metabolic disorders such as atherosclerosis and insulin resistance by infiltrating the artery wall and adipose tissue (AT), respectively. Data from human studies indicate that elevated plasma levels of chemokines are correlated with these metabolic diseases. Recruitment of macrophages to the artery wall is well known to be one of the first steps in early atherosclerotic lesion formation. Likewise, recruitment of macrophages to AT is thought to contribute to insulin resistance associated with obesity. Based on this knowledge, much recent work in these areas has focused on the role of chemokines in attracting immune cells (monocytes/macrophages in particular) to these 2 sites. Thus, understanding the potential for chemokines to contribute to metabolic disease can help direct studies of chemokines as therapeutic targets. In this article, we will review current literature regarding the role of chemokines in atherosclerosis and obesity-related insulin resistance. We will focus on novel work showing that chemokine secretion from endothelial cells, platelets, and adipocytes can contribute to immune cell recruitment, with a diagram showing the time course of chemokine expression and leukocyte recruitment to AT. We will also highlight a few of the lesscommonly known chemokine-chemokine receptor pairs. Finally, we will discuss the potential for chemokines as therapeutic targets for treatment of atherosclerosis and insulin resistance.