Advances in residual vector quantization (RVQ) are surveyed. Definitions of joint encoder optimality and joint decoder optimality are discussed. Design techniques for RVQs with large numbers of stages and generally different encoder and decoder codebooks are elaborated and extended. Fixed-rate RVQs, and variable-rate RVQs that employ entropy coding are examined. Predictive and finite state RVQs designed and integrated into neural-network based source coding structures are revisited. Successive approximation RVQs that achieve embedded and refinable coding are reviewed. A new type of successive approximation RVQ that varies the instantaneous block rate by using different numbers of stages on different blocks is introduced and applied to image waveforms, and a scalar version of the new residual quantizer is applied to image subbands in an embedded wavelet transform coding system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.