Wireless networks comprising unmanned aerial vehicles can offer limited connectivity in a cost-effective manner to disaster-struck regions where terrestrial infrastructure might have been damaged. While these drones offer advantages such as rapid deployment to far-flung areas, their operations may be rendered ineffective by the absence of an adequate energy management strategy. This article considers the multi-faceted applications of these platforms and the challenges thereof, in the networks of the future. In addition to providing an overview of the work done by researchers in determining the features of the air-toground channel, the article explores the use of drones in fields as diverse as military surveillance and network-rehabilitation for disaster-struck areas. It also goes on to present a case-study which envisages a scenario in which drones operate alongside conventional wireless infrastructure, thereby allowing a greater number of users to establish a line-of-sight link for communication. This study investigates a power allocation strategy for the microwave base station and the small base stations operating at 28 GHz frequency band. The self-adaptive power control strategy for drones is dependent on the maximum allowable interference threshold and minimum data rate requirements. This study highlights the importance of incorporating the drones in the multi-tier heterogeneous network to extend the network coverage and capacity.
Abstract-Millimeter wave (mmWave) and Device-to-Device (D2D) communications have been considered as the key enablers of the next generation networks. We consider a D2D-enabled hybrid cellular network compromising of µW macro-cells coexisting with mmWave small cells. We investigate the dynamic resource sharing in downlink transmission to maximize the energy efficiency (EE) of the priority, or cellular users (CUs), that are opportunistically served by either macrocells or mmWave small cells, while satisfying a minimum quality-of-service (QoS) level for the D2D pairs. In order to solve this problem, we first formulate a selfadaptive power control mechanism for the D2D pairs subject to the interference threshold constraint set for the CUs, while maintaining its minimum QoS level. Subsequently, the original EE optimization problem, which aimed at maximizing the EE for both CUs and D2D pairs, has been broken up into two subproblems that manage the radio resource allocation for D2D pairs and maximize EE exclusively for CUs, in that order. We then propose an iterative algorithm to provide a near-optimal EE solution for CUs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.