The main aim of the study is to quantify the cytotoxic property of the Fucoidan extracted from the Turbinaria conoides using the MTT assay with the standard fucose. Fucoidan was extracted using the soaked water method and it was determined using the HPLC procedure the obtained Test sample Fucoidan extracted from the Turbinaria conoides and standard fucose was subjected to the cytotoxicity assay against the MCF7 Human breast cancer cell line, A549 lung cancer cell line, and L929 normal mouse fibroblast cell line. From the results it was found that the Test sample showed good IC50 value for MCF7 cell line then A549 with an increasing concentration 24 hours incubation at 37°C The IC50 for MCF7 was 115.21 µg/ml and A549 396.46µg/ml and the Fucoidan extract was checked for its cytotoxicity against the normal mouse fibroblast cell line L929, Fucoidan was found non-lethal to the L929 mouse fibroblast normal cell line. Standard fucose also gave a significant result towards MCF7 and against the L929. This indicates that the Fucoidan extracted from Tubinaria conoides shows better anticancer potential in it. Hence its application can be further extended in the pharmacological fields.
Ethylene diamine is an organic compound which is a strongly basic amine and is used to conjugate Piperonal, an heterocyclic aldehyde. The ethylene diamine conjugated piperonal was prepared using simple method and the antioxidant assays like DPPH, ABTS, Ferric reducing assay and several other methods were carried out through in vitro assays. The experiments were carried out with unconjugated piperonal and compared with the activity shown by the test sample. The overall result shows a good antioxidant effect when compared with various standard drugs such as ascorbic acid, gallic acid, BHT etc., Hence, the results proved that, conjugated piperonal can be used as antioxidants in scavenging free radicals generated as consequence of various disease condition. Further, the synthesised compound can be explored for various experimental studies to confirm their role in combating various diseases.
The bark extract of Rhizophora mucronata (BERM) was recently reported for its prominent in vitro protective effects against liver cell line toxicity caused by various toxicants, including ethanol. Here, we aimed to verify the in vivo hepatoprotective effects of BERM against ethanol intoxication with the prediction of potential targets employing in silico studies. An oral administration of different concentrations (100, 200 and 400 mg/kg body weight) of BERM before high-dose ethanol via intraperitoneal injection was performed in mice. On day 7, liver sections were dissected for histopathological examination. The ethanol intoxication caused liver injury and large areas of necrosis. The pre-BERM administration decreased the ethanol-induced liver damage marker tumor necrosis factor-alpha (TNF-α) expression, reduced hepatotoxicity revealed by nuclear deoxyribonucleic acid (DNA) fragmentation and decreased oxidative stress indicated by malondialdehyde and glutathione contents. Our in silico studies have identified BERM-derived metabolites exhibiting the highest predicted antioxidant and free radical scavenger activities. Molecular docking studies showed that most of the metabolites were predicted to be enzyme inhibitors such as carbonic anhydrase inhibitors, which were reported to stimulate the antioxidant defense system. The metabolites predominantly presented acceptable pharmacokinetics and safety profiles, suggesting them as promising new antioxidant agents. Altogether, the BERM extract exerts antioxidative activities and shows promising hepatoprotective effects against ethanol intoxication. Identification of related bioactive compounds will be of interest for future use at physiological concentrations in ethanol-intoxicated individuals.
Background The crude ethyl acetate Trichoderma viride extract obtained from Ziziphus mauritiana was initially analyzed by HPLC for identification of major bioactive compounds, and then, it was subjected for in vivo acute and sub-acute toxicity, cervical cancer studies using Wistar albino rats. Result During acute toxicity studies, animal groups treated with distinct dosage of 2000 mg/kg restrained toxicity signs in tested groups compared to controls for 14 days which established to be secure and non-toxic even at high dose. However, in terms of sub-acute toxicity studies, animals were given with repeated amount of (10 mg/kg, 20 mg/kg and 40 mg/kg) for a period of 28 days along with control group. Upon investigations of hematological, biochemical and histopathological studies repeated dose of 20 mg/kg and 40 mg/kg of T. viride extract found to be normal and no other major changes observed among treated groups. During in vivo studies, after treatment of T. viride extract (40 mg/kg) effectively inhibited the cervical cancer cell growth in DES-treated groups. Through HPLC analysis the major compound ursolic acid and 2,5-piperazinedione were mainly identified. Conclusion The secondary metabolites of endophytes have been used substantially for the sustainable production of therapeutically important compounds. The limited availability of bioactive principles in plant sources could be surpassed by exploiting the chemical entities in the endophytes. In the present investigation, it has been accomplished that ethyl acetate extract of T. viride was safe at higher and lower dosage could be considered for pharmacological studies from plant may provide an excellent avenue for the discovery of drug candidates against deadly cancer diseases.
In this paper, the synchronization of fractional-order uncertain delayed neural networks with an event-triggered communication scheme is investigated. By establishing a suitable Lyapunov–Krasovskii functional (LKF) and inequality techniques, sufficient conditions are obtained under which the delayed neural networks are stable. The criteria are given in terms of linear matrix inequalities (LMIs). Based on the drive–response concept, the LMI approach, and the Lyapunov stability theorem, a controller is derived to achieve the synchronization. Finally, numerical examples are presented to confirm the effectiveness of the main results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.