Data transfer is now an essential function for science discoveries, particularly within big data environments. To support data transfer for big data science, there is a need for high performance, scalable, end-to-end, and programmable networks that enable science applications to use the network most efficiently. The existing network paradigm that support big data science consists of three major components: terabit networks that provide high network bandwidths, Data Transfer Nodes (DTNs) and Science DMZ architecture that bypasses the performance hotspots in typical campus networks, and on-demand secure circuits/paths reservation systems, such as ESNet OSCARS and Internet2 AL2S, which provides automated, guaranteed bandwidth service in WAN. This network paradigm has proven to be very successful. However, to reach its full potentials, we claim that existing network paradigm for big data science must address three major problems: the last mile problem, the scalability problem, and the programmability problem. To address these problems, we proposed a solution called AmoebaNet. AmoebaNet applies Software Defined Networking (SDN) technology to provide "QoS-guaranteed" network services in campus or local area networks. AmoebaNet complements existing network paradigm for big data science: it allows application to program networks at run-time for optimum performance; and, in conjunction with WAN circuits/paths reservation system such as ESNet OSCARS and Internet2 AL2S; it solves the last mile problem and the scalability problem. • Programmability. This feature enables science applications to program networks at run-time to suit their needs. A powerful and rich
Cloud computing manages system resources such as processing, storage, and networking by providing users with multiple virtual machines (VMs) as needed. It is one of the rapidly growing fields that come with huge computational power for scientific workloads. Currently, the scientific community is ready to work over the cloud as it is considered as a resource-rich paradigm. The traditional way of executing scientific workloads on cloud computing is by using virtual machines. However, the latest emerging concept of containerization is growing more rapidly and gained popularity because of its unique features. Containers are treated as lightweight as compared to virtual machines in cloud computing. In this regard, a few VMs/containers-associated problems of performance and throughput are encountered because of middleware technologies such as virtualization or containerization. In this paper, we introduce the configurations of VMs and containers for cloud-based scientific workloads in order to utilize the technologies to solve scientific problems and handle their workloads. This paper also tackles throughput and efficiency problems related to VMs and containers in the cloud environment and explores efficient resource provisioning by combining four unique methods: hyperthreading (HT), vCPU cores selection, vCPU affinity, and isolation of vCPUs. The HEPSCPEC06 benchmark suite is used to evaluate the throughput and efficiency of VMs and containers. The proposed solution is to implement four basic techniques to reduce the effect of virtualization and containerization. Additionally, these techniques are used to make virtual machines and containers more effective and powerful for scientific workloads. The results show that allowing hyperthreading, isolation of CPU cores, proper numbering, and allocation of vCPU cores can improve the throughput and performance of virtual machines and containers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.