The luminous efficiency of inorganic white light‐emitting diodes, to be used by the next generation as light initiators, is continuously progressing and is an emerging interest for researchers. However, low color‐rendering index (Ra), high correlated color temperature (CCT), and poor stability limit its wider application. Herein, it is reported that Sm3+‐ and Eu3+‐doped calcium scandate (CaSc2O4 (CSO)) are an emerging deep‐red‐emitting material with promising light absorption, enhanced emission properties, and excellent thermal stability that make it a promising candidate with potential applications in emission display, solid‐state white lighting, and the device performance of perovskite solar cells (PSCs). The average crystal structures of Sm3+‐doped CSO are studied by synchrotron X‐ray data that correspond to an extremely rigid host structure. Samarium ion is incorporated as a sensitizer that enhances the emission intensity up to 30%, with a high color purity of 88.9% with a 6% increment. The impacts of hosting the sensitizer are studied by quantifying the lifetime curves. The CaSc2O4:0.15Eu3+,0.03Sm3+ phosphor offers significant resistance to thermal quenching. The incorporation of lanthanide ion‐doped phosphors CSOE into PSCs is investigated along with their potential applications. The CSOE‐coated PSCs devices exhibit a high current density and a high power conversion efficiency (15.96%) when compared to the uncoated control devices.
The biodegradable biopolymer chitosan had its linear structure chemically modified in a two-step reaction, first by exploring the amino reactivity with glycidylmethacrylate, whose intermediate product, containing an aldehyde group, was then reacted with 1,2-ethanedithiol. Chitosan and the synthesized biopolymers were characterized by elemental analyses, infrared spectroscopy, nuclear magnetic resonance of the carbon nucleus in the solid state, X-ray diffractometry, thermogravimetry and scanning electron microscopy, to give a degree of immobilization of 3.00 mmol g -1 . The available basic nitrogen, sulfur and oxygen Lewis centers attached to the enlarged pendant chains enriched the ability of the biopolymer for copper, lead and cadmium sorption from aqueous solution, to give maximum capacities of 2.05 ± 0.01; 2.53 ± 0.02 and 1.88 ± 0.01 mmol g -1 , when compared to chitosan with 1.54 ± 0.33; 1.22 ± 0.04 and 1.12 ± 0.08 mmol g -1 , respectively, using the Langmuir sorption isotherms. Based on the present results, the highest amount of these cation sorptions, especially with lead that is associated with sulfur-cation soft interactions, is dependent directly on not only the presence of long pendant chain attached, but also the availability of favorable Lewis base centers. The experimental data adjusted to the Langmuir, the Freundlich and the Temkin sorption isotherms using linear and non-linear regression methods and are in agreement with the best fit for Langmuir model type I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.