We found that patients with sickle cell disease have subnormal values of cerebral oxygen saturation. Red cell transfusions significantly increased the brain oxygenation in these patients. Cerebral oximetry may be a useful, noninvasive method for assessing the effect of circulating normal red cells in sickle cell patients after transfusions.
Central retinal vein occlusion has not been reported previously in patients with sickle cell anemia. We describe the case of a 31-year-old man with sickle cell anemia who developed this complication. The search for risk factors for central retinal vein occlusion in this young patient revealed protein S deficiency and a history of iron deficiency. He was treated with anticoagulation therapy, and his vision improved gradually.
e23037 Background: EGFR mutations are the most frequent targetable genomic alterations in non-small cell lung cancer (NSCLC) patients (pts). While tissue biopsy remains the standard for assessing of EGFR mutation status, it is invasive and not always feasible. Liquid biopsy is a minimally invasive alternative. Biocept’s proprietary TargetSelector system evaluates circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in blood. We aimed to clinically validate the accuracy of EGFR-specific TargetSelector in NSCLC pts. Methods: At three time points (T0: baseline before TKI, T1: during EGFR-TKI therapy, T2: after progression), blood samples were collected in Biocept OncoCEE BCT validated to preserve DNA up to 8 days. These samples were interrogated for three EGFR mutations: exon 19 deletions (Del 19), L858R, and T790M. The objectives are to assess detection sensitivity of liquid biopsy using EGFR mutation status vs the tissue as gold standard and to evaluate whether the detection sensitivity changes with EGFR-TKI therapy. Results: A total of 53 study pts were enrolled (male, 21; female, 32). The mean age was 70.6 (range: 46 – 90). Most pts had stage IV disease (43, 81.1%) and lung adenocarcinoma (48, 90.6%). 26 (49.1%) pts had EGFR mutations in tumor tissue: Del 19, 13; L858R, 8; T790M, 6; other, 8. Detection sensitivity for sensitizing EGFR mutations (Del 19 and L858R) at T0, T1, and T2 was 60.0% (6/10), 33.3% (5/15), and 33.3% (1/3), respectively. There was no statistical difference in CTC counts between activating EGFR mutation-positive and -negative pts (mean CTC count: 10.5 vs 20.1; p = 0.11 by two-sided t-test). Detection sensitivity for T790M was 33.3% (2/6) and 5 of 6 pts were receiving T790M directed therapy (3, rociletinib; 2, osimertinib) at the time of blood draw. Two pts – one patient before initiation of EGFR-TKI and the other during treatment with erlotinib – were found to have T790M mutations only in blood and not in tissue. Conclusions: Activating EGFR mutation detection may decrease during the course of TKI therapy, possibly due to treatment response. Further research with an expanded sample size and serial collections are needed to evaluate this finding, and to investigate possible implications of the presence of T790M only in blood.
Recently we reported the use of a non-invasive near-infrared optical spectroscopy technique to measure cerebral oxygenation (cerebral oximetry, rSO2%) in agroup of 27 adult patients with sickle cell disease (Eur J Clin Invest, 34:143,2004). The sickle cell patients’ rSO2 values were significantly lower (mean 47.7%) than those in normal subjects (mean 61.3%) even though none of the patients had clinical evidence of stroke or cerebral ischemia. We included patients with all Hb phenotypes, and regardless of hydroxyurea (HU) treatment. Transfusions improved cerebral oxygen saturation but the post-transfusion values still did not reach normal levels. Our findings were corroborated independently by Raj et al. who studied 25 children with sickle cell disease (J Pediat Hematol Oncol 26:279,2004). In order to determine if long-term HU treatment affects rSO2, we analyzed cerebral oximetry results in a subset of 31 patients with sickle cell anemia (Hb SS). Eleven of them were on long-term (more than 6 months) HU treatment at stable doses (1000–1500 mg/day). The table shows that the mean rSO2, Hb, Hct, and MCV in HU-treated patients were significantly higher than those in sickle cell anemia (SCA) patients not on HU. The rSO2 in HU-treated patients was 12.5% higher than in SS patients not on this drug. By comparison, we previously reported a 24% increment in rSO2 following transfusions. A group of 8 patients who were on long-term HU treatment were given also single 1000 mg oral doses of HU and their rSO2 was measured for 12 hours without noticeable change in cerebral oxygenation. Nor did rSO2 change after oxygen inhalation (3L/min). The cause of the low rSO2 in sickle cell patients is unknown and still under investigation. It is probably not related exclusively to the anemia, since, as previously reported, anemic subjects without sickle cell disease appear to have normal rSO2. These preliminary results indicate that chronic HU treatment is associated with higher rSO2 values in SCA. If validated in a larger number of patients, our findings suggest that cerebral oximetry could be a useful, non-invasive method for assessing a new in vivo effect of HU and red cell transfusion in sickle cell disease: increased blood oxygen saturation in the cerebral vasculature. HYDROXYUREA AND CEREBRAL OXYGEN SATURATION IN PATIENTS WITH SICKLE CELL DISEASE NO HYDROXYUREA (N=20) HYDROXYUREA (N=11) P value* rSO2 = cerebral oxygen saturation. *= t-test. Plus/minus figures represent SD Mean rSO2 (%) 41 ± 6.6 46 ± 7.6 0.025 Mean Hb (g/dl) 8.4 ± 1.4 9.68 ± 1.2 0.029 Mean Hct (%) 24± 3.4 28± 4.4 0.027 Mean MCV (fl) 89± 8 102± 7 0.028
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.